
Simulink® Design Verifier™ 1
User’s Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Simulink® Design Verifier™ User’s Guide

© COPYRIGHT 2007–2008 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
May 2007 Online only New for Version 1.0 (Release 2007a+)
September 2007 Online only Revised for Version 1.1 (Release 2007b)
March 2008 Online only Revised for Version 1.2 (Release 2008a)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Acknowledgment

Acknowledgment
The Simulink® Design Verifier™ software uses Prover Plug-In® products from
Prover® Technology to generate test cases and prove model properties.

�

Acknowledgment

Contents

Acknowledgment

Getting Started

1
Product Overview . 1-2

Before You Begin . 1-3
What You Need to Know . 1-3
Required Products . 1-3

Starting the Simulink® Design Verifier™ Software 1-4

Running a Demo Model . 1-6
About This Demo . 1-6
Opening the Model . 1-6
Generating Test Cases . 1-7
Exploring the Test Harness . 1-9
Interpreting the Simulink® Design Verifier™ Report 1-12

Basic Workflow for Using the Simulink® Design
Verifier™ Software . 1-17

Learning More . 1-18
Next Step . 1-18
Product Help . 1-18
The MathWorks Online . 1-19

v

Ensuring Compatibility with the Simulink®

Design Verifier™ Software

2
Unsupported Simulink® Software Features 2-3

List of Unsupported Simulink® Software Features 2-3
Limitations of Simulink® Block Support 2-3

Unsupported Stateflow® Software Features 2-5

Limitations of Support for the Embedded MATLAB™
Subset . 2-7
List of Unsupported Embedded MATLAB™ Subset

Features . 2-7
Limitations of Embedded MATLAB™ Library Function

Support . 2-8

Limitations of Fixed-Point Support 2-9

Checking Model Compatibility . 2-10

Working with Block Replacements

3
About Block Replacements . 3-2

Built-In Block Replacements . 3-3

Template for Block Replacement Rules 3-6

Creating Custom Block Replacements 3-7
About Custom Block Replacements 3-7
Constructing Replacement Blocks . 3-7
Writing Block Replacement Rules . 3-10

Executing Block Replacements . 3-15

vi Contents

Configuring Block Replacements . 3-15
Replacing Blocks in a Model . 3-16

Specifying Parameter Configurations

4
About Parameter Configurations . 4-2

Template for Parameter Configurations 4-3

Defining Parameter Configurations 4-4

Parameter Configuration Example 4-7
About This Example . 4-7
Constructing the Example Model . 4-8
Parameterizing the Constant Block 4-11
Specifying a Parameter Configuration 4-12
Analyzing the Example Model . 4-13
Simulating the Test Cases . 4-16

Configuring Simulink® Design Verifier™
Options

5
Viewing Simulink® Design Verifier™ Options 5-2

Configuring Simulink® Design Verifier™ Options 5-5
Design Verifier Pane . 5-5
Block Replacements Pane . 5-6
Parameters Pane . 5-8
Test Generation Pane . 5-9
Property Proving Pane . 5-11
Results Pane . 5-12
Report Pane . 5-14

vii

Saving Simulink® Design Verifier™ Options 5-16

Generating Test Cases

6
About Test Case Generation . 6-2

Basic Workflow for Generating Test Cases 6-3

Generating Test Cases Example . 6-4
About This Example . 6-4
Constructing the Example Model . 6-5
Checking Compatibility of the Example Model 6-6
Configuring Test Generation Options 6-10
Analyzing the Example Model . 6-13
Customizing Test Generation . 6-21
Reanalyzing the Example Model . 6-25

Proving Properties of a Model

7
About Property Proofs . 7-2

Basic Workflow for Proving Model Properties 7-3

Proving Model Properties Example 7-4
About This Example . 7-4
Constructing the Example Model . 7-5
Checking Compatibility of the Example Model 7-6
Instrumenting the Example Model 7-10
Configuring Property Proving Options 7-13
Analyzing the Example Model . 7-15
Customizing the Example Proof . 7-23
Reanalyzing the Example Model . 7-25

viii Contents

Reviewing the Results

8
Exploring Test Harness Models . 8-2

About Test Harness Models . 8-2
Anatomy of a Test Harness . 8-2
Simulating the Test Harness . 8-6

Understanding Simulink® Design Verifier™ Reports . . 8-8
About Simulink® Design Verifier™ Reports 8-8
Front Matter . 8-8
Summary Chapter . 8-9
Block Replacements Summary Chapter 8-14
Test/Proof Objectives Chapter . 8-14
Test Cases / Counterexamples Chapter 8-19
Approximations Chapter . 8-22

Examining Simulink® Design Verifier™ Data Files 8-23
About Simulink® Design Verifier™ Data Files 8-23
Anatomy of the sldvData Structure 8-23
Simulating Models with Simulink® Design Verifier™ Data

Files . 8-28

Analyzing Large Models and Improving
Performance

A
How the Simulink® Design Verifier™ Software

Works . A-2

Sources of Model Complexity . A-5

Handling Models with Large Numbers of Inputs A-6

Reducing Complexity from Floating-Point Operations
and Nonlinear Arithmetic . A-7

ix

Partitioning Inputs and Generating Tests
Incrementally . A-9

Handling Models with Large State Spaces A-11

Handling Problems with Counters and Timers A-12

Strategies for Proving Properties of Large Models A-13

Function Reference

9

Block Reference

10

Configuration Parameters

11
Design Verifier Pane . 11-2

Design Verifier Pane Overview . 11-3
Mode . 11-4
Maximum analysis time . 11-5
Display unsatisfiable test objectives 11-6
Output directory . 11-7
Make output file names unique by adding a suffix 11-8

Design Verifier Pane: Block Replacements 11-9
Block Replacements Pane Overview 11-10
Apply block replacements . 11-11
List of block replacement rules . 11-12
File path of the output model . 11-13

Design Verifier Pane: Parameters 11-14

x Contents

Parameters Pane Overview . 11-15
Apply parameters . 11-16
Parameter configuration file . 11-17

Design Verifier Pane: Test Generation 11-18
Test Generation Pane Overview . 11-19
Model coverage objectives . 11-20
Test conditions . 11-21
Test objectives . 11-22
Maximum test case steps . 11-23
Test suite optimization . 11-24

Design Verifier Pane: Property Proving 11-26
Property Proving Pane Overview . 11-27
Assertion blocks . 11-28
Proof assumptions . 11-29
Strategy . 11-30
Maximum violation steps . 11-31

Design Verifier Pane: Results . 11-32
Results Pane Overview . 11-33
Save test harness as model . 11-34
Harness model file name . 11-35
Save test data to file . 11-36
Data file name . 11-37
Include expected output values . 11-38
Randomize data that does not affect outcome 11-40

Design Verifier Pane: Report . 11-42
Report Pane Overview . 11-43
Generate report of the results . 11-44
Report file name . 11-45
Include screen shots and plots . 11-46
Display report . 11-47

Parameter Command-Line Information Summary 11-48

xi

Simulink® Block Support

12

Embedded MATLAB™ Subset Support

13

Glossary

Examples

B
Working with Block Replacements B-2

Specifying Parameter Configurations B-2

Generating Test Cases . B-2

Proving Properties of a Model . B-2

Index

xii Contents

1

Getting Started

Product Overview (p. 1-2) Overview of the Simulink® Design
Verifier™ software

Before You Begin (p. 1-3) Other products you need or might
want to use with the Simulink
Design Verifier software

Starting the Simulink® Design
Verifier™ Software (p. 1-4)

Accessing the Simulink Design
Verifier library

Running a Demo Model (p. 1-6) Analyzing a simple demo model
with the Simulink Design Verifier
software

Basic Workflow for Using the
Simulink® Design Verifier™
Software (p. 1-17)

Overview of the basic workflow

Learning More (p. 1-18) Where to find more information

1 Getting Started

Product Overview
The Simulink® Design Verifier™ software extends the Simulink® product by
performing exhaustive formal analyses of your models to confirm that they
behave correctly.

The Simulink Design Verifier software allows you to perform the following
tasks:

• Generate test cases that achieve model coverage and custom objectives
you specify in a model.

• Prove properties that you specify in a model, and identify examples of any
property violations.

• Detect unreachable design elements in a model, such as inaccessible
subsystems, illegal switch conditions, and unachievable states.

• Produce detailed reports regarding test case generation and property proofs.

1-2

Before You Begin

Before You Begin

In this section...

“What You Need to Know” on page 1-3

“Required Products” on page 1-3

What You Need to Know
Getting started with the Simulink® Design Verifier™ software requires that
you have some experience using model coverage, as well as building and
running Simulink® models.

To learn more about these topics, see the following:

• “Using Model Coverage” in the Simulink® Verification and Validation™
User’s Guide

• Simulink Getting Started Guide and Using Simulink

Required Products
You must have the following products installed to use the Simulink Design
Verifier software:

• MATLAB®

• Simulink

• Simulink Verification and Validation

If you want to use the Simulink Design Verifier software with Stateflow®

charts, you must have the following software product:

• Stateflow

1-3

1 Getting Started

Starting the Simulink® Design Verifier™ Software
The Simulink® Design Verifier™ software is part of your MATLAB®

installation.

To open the Simulink Design Verifier block library:

• Type simulink at the MATLAB prompt to display the Simulink® Library
Browser, and then select the Simulink Design Verifier entry in the
contents tree.

1-4

Starting the Simulink® Design Verifier™ Software

• Alternatively, type sldvlib at the MATLAB prompt to display the
Simulink Design Verifier library.

1-5

1 Getting Started

Running a Demo Model

In this section...

“About This Demo” on page 1-6

“Opening the Model” on page 1-6

“Generating Test Cases” on page 1-7

“Exploring the Test Harness” on page 1-9

“Interpreting the Simulink® Design Verifier™ Report” on page 1-12

About This Demo
The sections that follow describe a demo model, Flip Flop Test Generation,
which illustrates how the Simulink® Design Verifier™ software can be used
to generate test cases that achieve complete model coverage. This demo will
help you understand how to analyze models with the Simulink Design Verifier
software and interpret the results.

Opening the Model
To open the Flip Flop Test Generation model, enter sldvdemo_flipflop at
the MATLAB® prompt.

The Flip Flop Test Generation model appears.

1-6

Running a Demo Model

Generating Test Cases
To generate test cases for the Flip Flop Test Generation model, in the model
window double-click the block labeled Run.

The Simulink Design Verifier software begins analyzing the model to generate
test cases. During its analysis, the software displays the following log window:

1-7

1 Getting Started

The log window updates you on the progress of the Simulink Design Verifier
software as it analyzes the model. Also, the log window includes a Stop
button that you can click to terminate the analysis at anytime.

When the Simulink Design Verifier software completes its analysis, it displays
the following items:

• Test harness model named sldvdemo_flipflop_harness.mdl

• Report named sldvdemo_flipflop_report.html

The sections that follow describe each of these items.

1-8

Running a Demo Model

Exploring the Test Harness
The Simulink Design Verifier software creates a test harness model when it
completes its analysis. The test harness for the Flip Flop Test Generation
model appears as follows:

1 The block labeled Test Case Explanation is a DocBlock that documents the
test cases the Simulink Design Verifier software generated. Double-click
the Test Case Explanation block to view a description of each test case in
terms of the objectives that it satisfies.

1-9

1 Getting Started

2 The block labeled Test Unit is a Subsystem block that contains a copy
of the original model the Simulink Design Verifier software analyzed.
Double-click the Test Unit block to view its contents and confirm that it is
a copy of the Flip Flop Test Generation model.

3 The block labeled Inputs is a Signal Builder block that contains the test
case signals the Simulink Design Verifier software generated. Double-click
the Inputs block to open the Signal Builder dialog box and view the test
case signals.

4 Look at the signal values for a particular test case. In the Signal Builder
dialog box, select the tab associated with a test case. For example, select
Test Case 3.

The Signal Builder dialog box displays the signal values for Test Case 3.

1-10

Running a Demo Model

In Test Case 3 at 0.1 seconds,

• The D signal remains 0.

• The CLK signal transitions from 0 to 1.

• The !CLR signal transitions from 0 to 1.

This group of signals achieves the test objectives described in the Test
Case Explanation block.

5 To confirm that the Simulink Design Verifier software achieved complete
model coverage, simulate the test harness using all the test cases. In the

Signal Builder dialog box, click the Run all button .

1-11

1 Getting Started

The Simulink® software simulates the test harness using all the test cases,
while the Simulink® Verification and Validation™ software collects model
coverage information and displays a coverage report with the following
summary:

The coverage report indicates the Simulink Design Verifier software
generated test cases that achieve complete coverage for the Flip Flop Test
Generation model.

Interpreting the Simulink® Design Verifier™ Report
The Simulink Design Verifier software creates an HTML report that
summarizes its analysis results. The report includes the following Table of
Contents whose items you can click to navigate to particular chapters and
sections:

1 In the Table of Contents, click Summary.

1-12

Running a Demo Model

The report displays its Summary chapter, as shown here.

The Summary chapter provides an overview of the Simulink Design
Verifier analysis. For instance, the chapter includes information about the
model it analyzed, the results it obtained, the files it generated, and the
options it used.

2 Under Analysis Information, click Objectives Satisfied.

The report displays the following table under its Test Objectives chapter:

1-13

1 Getting Started

The Objectives Satisfied table lists model coverage objectives that the
Simulink Design Verifier software satisfied. That is, the software generated
test cases that achieve each of the model coverage objectives shown here.

3 Under the # column of the Objectives Satisfied table, click objective 5.

The report displays the following table under its Test Objectives chapter:

1-14

Running a Demo Model

This table lists all the model coverage objectives associated with the D
Flip-Flop subsystem in the demo model. It displays a description and
status for each objective, as well as the test case that achieves the objective.
Objective 5 applies only to the D Flip-Flop subsystem, so it is listed here.

4 Under the Test Cases column of the table, click TC 3.

The report displays its Test Case 3 section under the Test Cases chapter,
as shown here.

1-15

1 Getting Started

This section provides details about a test case that the Simulink Design
Verifier software generated. For example, Test Case 3 satisfies seven model
coverage objectives. In this test case, the following signal values achieve
objectives 2, 3, 5, 6, 7, 9, and 12:

• The D signal’s initial value is 0 at 0 seconds.

• The CLK signal transitions from 0 to 1 at 0.1 seconds.

• The !CLR signal transitions from 0 to 1 at 0.1 seconds.

This information matches what you see in the test harness model.
Specifically, the Inputs block depicts identical signal values for Test Case 3,
and the Test Case Explanation block lists seven objectives that Test Case 3
achieves (see “Exploring the Test Harness” on page 1-9).

1-16

Basic Workflow for Using the Simulink® Design Verifier™ Software

Basic Workflow for Using the Simulink® Design Verifier™
Software

The Simulink® Design Verifier™ User’s Guide on page 1 is organized on the
basis of workflow that you follow when generating tests for your model or
proving its properties. This workflow is described in the following steps, which
cite locations in the documentation that you can refer to for more information:

Step Action See...

1 Check the compatibility of your model. Chapter 2, “Ensuring Compatibility with the
Simulink® Design Verifier™ Software”

2 Optionally, prepare your model for
analysis.

Chapter 3, “Working with Block
Replacements”

Chapter 4, “Specifying Parameter
Configurations”

3 Set Simulink® Design Verifier™ options. Chapter 5, “Configuring Simulink® Design
Verifier™ Options”

4 Generate test cases for your model or
prove its properties.

Chapter 6, “Generating Test Cases”

Chapter 7, “Proving Properties of a Model”

5 Interpret the results. Chapter 8, “Reviewing the Results”

1-17

1 Getting Started

Learning More

In this section...

“Next Step” on page 1-18

“Product Help” on page 1-18

“The MathWorks Online” on page 1-19

Next Step
To begin learning how to use the Simulink® Design Verifier™ software, see
Chapter 2, “Ensuring Compatibility with the Simulink® Design Verifier™
Software”. Also see the following topics to continue your exploration of the
software:

For... See...

Exercise that walks you through the
process of generating test cases for
a model

“Generating Test Cases Example” on
page 6-4

Exercise that walks you through the
process of proving a model property

“Proving Model Properties Example”
on page 7-4

Product Help
More information is available with your product installation. In the

MATLAB® desktop, click for help, and then click the product name in
the Contents pane.

For... See...

List of blocks Blocks — Alphabetical List

Tutorials Examples in Documentation

More product demonstrations Simulink Design Verifier Demos

What’s new in this product Release Notes

1-18

Learning More

The MathWorks Online
Point your internet browser to the MathWorks Web site for additional
information and support at

http://www.mathworks.com/products/sldesignverifier/

1-19

http://www.mathworks.com/products/sldesignverifier/

1 Getting Started

1-20

2

Ensuring Compatibility
with the Simulink® Design
Verifier™ Software

The Simulink® Design Verifier™ software supports a broad range of
Simulink® and Stateflow® software features. However, there are features that
the product does not support. Therefore, you must avoid using particular
features in models that you plan to analyze with the Simulink Design Verifier
software. The following sections identify the unsupported features and
describe how to check whether your model is compatible for use with the
Simulink Design Verifier software.

Unsupported Simulink® Software
Features (p. 2-3)

Lists Simulink software features
that the Simulink Design Verifier
software does not support.

Unsupported Stateflow® Software
Features (p. 2-5)

Lists the Stateflow software features
that the Simulink Design Verifier
software does not support.

Limitations of Support for the
Embedded MATLAB™ Subset
(p. 2-7)

Lists limitations associated
with Simulink Design Verifier
software support for the Embedded
MATLAB™ subset.

2 Ensuring Compatibility with the Simulink® Design Verifier™ Software

Limitations of Fixed-Point Support
(p. 2-9)

Lists limitations associated with
Simulink Design Verifier software
support for fixed-point data types.

Checking Model Compatibility
(p. 2-10)

Describes how to check whether
your model is compatible with the
Simulink Design Verifier software.

2-2

Unsupported Simulink® Software Features

Unsupported Simulink® Software Features

In this section...

“List of Unsupported Simulink® Software Features” on page 2-3

“Limitations of Simulink® Block Support” on page 2-3

List of Unsupported Simulink® Software Features
The Simulink® Design Verifier™ software does not support the following
Simulink® software features. Avoid using these unsupported features in
models that you analyze with the Simulink Design Verifier software.

Feature Not Supported Remarks

Variable-step solvers The Simulink Design Verifier software supports
only fixed-step solvers (see “Choosing a
Fixed-Step Solver” in Using Simulink).

Complex signals The Simulink Design Verifier software supports
only real signals (for contrast, see “Complex
Signals” in Using Simulink).

Nonvirtual buses The Simulink Design Verifier software supports
only virtual buses (see “Virtual and Nonvirtual
Buses” in Using Simulink).

Nonzero start times Although Simulink allows you to specify a
nonzero simulation start time (see “Specifying
a Simulation Start and Stop Time” in Using
Simulink), the Simulink Design Verifier
software generates signal data that begins only
at zero. If your model specifies a nonzero start
time, the Simulink Design Verifier software
ignores it and uses zero instead.

Limitations of Simulink® Block Support
The Simulink Design Verifier software provides various levels of support
for Simulink blocks. That is, the software either fully or partially supports
particular blocks, while it does not support others. Refrain from using

2-3

2 Ensuring Compatibility with the Simulink® Design Verifier™ Software

unsupported Simulink blocks in models that you analyze with the Simulink
Design Verifier software. Similarly, specify only the block parameters that
the Simulink Design Verifier software recognizes for blocks that it partially
supports. See Chapter 12, “Simulink® Block Support” for a list of Simulink
blocks and details regarding whether the Simulink Design Verifier software
provides support.

2-4

Unsupported Stateflow® Software Features

Unsupported Stateflow® Software Features
The Simulink® Design Verifier™ software does not support the following
Stateflow® software features. Avoid using these unsupported features in
models that you analyze with the Simulink Design Verifier software.

Feature Not Supported Remarks

ml namespace operator,
ml function, ml
expressions

The Simulink Design Verifier software does not
support calls to MATLAB® functions or access
to MATLAB workspace variables, which the
Stateflow software allows (see “Using MATLAB
Functions and Data in Actions” in the Stateflow
and Stateflow® Coder™ User’s Guide).

C math functions The Simulink Design Verifier software supports
calls to the following C math functions: abs,
ceil, fabs, floor, fmod, labs, ldexp, and pow
(only for an integer exponent). However, the
Simulink Design Verifier software does not
support calls to other C math functions that
the Stateflow software allows (see “Calling
C Functions in Actions” in the Stateflow and
Stateflow Coder User’s Guide).

Recursion The Simulink Design Verifier software does
not support recursive functions, which the
Stateflow software allows you to implement
using graphical functions (see “Using Graphical
Functions to Extend Actions” in the Stateflow
and Stateflow Coder User’s Guide). Also, the
Simulink Design Verifier software does not
support recursion that the Stateflow software
allows you to implement using a combination of
event broadcasts and function calls.

Custom C or C++ code The Simulink Design Verifier software does
not support custom C or C++ code, which
the Stateflow software allows (see “Building
Targets” in the Stateflow and Stateflow Coder
User’s Guide).

2-5

2 Ensuring Compatibility with the Simulink® Design Verifier™ Software

Feature Not Supported Remarks

Machine-parented data
and events

The Simulink Design Verifier software does
not support machine-parented data and events
(i.e., defined at the level of the Stateflow
machine in the Stateflow hierarchy), which the
Stateflow software allows (see “Defining Data”
and “Defining Events” in the Stateflow and
Stateflow Coder User’s Guide).

Stateflow structures The Simulink Design Verifier software does
not support Stateflow structures, which the
Stateflow software allows for implementing bus
signals (see “Working with Structures and Bus
Signals in Stateflow Charts” in the Stateflow
and Stateflow Coder User’s Guide).

Absolute-time temporal
logic

The Simulink Design Verifier software does not
support absolute-time temporal logic, which the
Stateflow software allows (see “Operators for
Absolute-Time Temporal Logic” in the Stateflow
and Stateflow Coder User’s Guide).

2-6

Limitations of Support for the Embedded MATLAB™ Subset

Limitations of Support for the Embedded MATLAB™ Subset

In this section...

“List of Unsupported Embedded MATLAB™ Subset Features” on page 2-7

“Limitations of Embedded MATLAB™ Library Function Support” on page
2-8

List of Unsupported Embedded MATLAB™ Subset
Features
The Simulink® Design Verifier™ software does not support the following
features of the Embedded MATLAB™ Function block in the Simulink®

software and Embedded MATLAB functions in the Stateflow® software.
Avoid using these unsupported features in models that you analyze with the
Simulink Design Verifier software.

Feature Not Supported Remarks

Complex numbers The Simulink Design Verifier software
supports only real numbers. However, the
Embedded MATLAB subset also supports
complex numbers (see “Working with Complex
Numbers” in the Embedded MATLAB™ User’s
Guide).

Structures The Simulink Design Verifier software does
not support structures, which the Embedded
MATLAB subset allows (see “Using Structures”
in the Embedded MATLAB™ User’s Guide).

Characters The Simulink Design Verifier software does
not support characters, which the Embedded
MATLAB subset allows (see “Working with
Characters” in the Embedded MATLAB™
User’s Guide).

2-7

2 Ensuring Compatibility with the Simulink® Design Verifier™ Software

Feature Not Supported Remarks

C functions The Simulink Design Verifier software does not
support calls to external C functions, which the
Embedded MATLAB subset allows (see “Calling
C Functions from the Embedded MATLAB
Subset” in the Embedded MATLAB™ User’s
Guide).

Extrinsic functions The Simulink Design Verifier software supports
extrinsic functions only when they do not affect
the output of an Embedded MATLAB function.
See “Calling MATLAB® Functions” in the
Embedded MATLAB™ User’s Guide for more
information.

Limitations of Embedded MATLAB™ Library Function
Support
The Simulink Design Verifier software provides various levels of support
for Embedded MATLAB library functions. That is, the software either fully
or partially supports particular functions, while it does not support others.
Refrain from using unsupported Embedded MATLAB library functions
in models that you analyze with the Simulink Design Verifier software.
See Chapter 13, “Embedded MATLAB™ Subset Support” for a list of the
Embedded MATLAB library functions for which the Simulink Design Verifier
software provides no support or limited support.

2-8

Limitations of Fixed-Point Support

Limitations of Fixed-Point Support
The Simulink® Design Verifier™ software supports fixed-point data types in
models that it analyzes. However, the following limitations apply:

• The Simulink Design Verifier software supports fixed-point data types
whose word size is 32 bits or less.

• The following Simulink Design Verifier blocks cannot accept or emit
fixed-point signals, nor can you specify fixed-point data types for their
block parameters:

- Proof Assumption

- Proof Objective

- Test Condition

- Test Objective

Likewise, the corresponding Simulink Design Verifier functions for use in
Stateflow® charts do not support fixed-point data types:

- dv.assume()

- dv.prove()

- dv.condition()

- dv.test()

• Parameter configurations do not support fixed-point data types (see
Chapter 4, “Specifying Parameter Configurations”).

2-9

2 Ensuring Compatibility with the Simulink® Design Verifier™ Software

Checking Model Compatibility
The Simulink® Design Verifier™ software provides a mechanism that checks
whether your model is compatible for analysis. To check the compatibility of
your model, from the Tools menu of your Simulink® model, select Design
Verifier > Check Model Compatibility.

The Simulink Design Verifier software displays a log window that confirms
whether your model is compatible for analysis.

2-10

Checking Model Compatibility

Otherwise, the Simulink Design Verifier software alerts you to any
incompatibilities that it identifies in your model. For example, suppose that
the preceding model specifies the use of an incompatible feature, such as a
variable-step solver. When checking the compatibility of your model in this
case, the Simulink Design Verifier software displays incompatibility errors in
the Simulation Diagnostics Viewer (see “Simulation Diagnostics Viewer” in
Using Simulink).

2-11

2 Ensuring Compatibility with the Simulink® Design Verifier™ Software

Using the information that the Simulation Diagnostics Viewer displays, you
can determine the cause of an incompatibility and correct it.

Note The Simulink Design Verifier software checks the compatibility of
a model incrementally. When it detects an incompatibility, it displays an
error message and stops the check without completing all the steps. If you
receive an error, correct the problem and then recheck whether your model is
compatible.

Alternatively, you can use the sldvcompat function to run the compatibility
checker programmatically at the command line or in an M-file program. See
sldvcompat in the Chapter 9, “Function Reference” for more information.

2-12

3

Working with Block
Replacements

The Simulink® Design Verifier™ software allows you to define rules that
replace blocks automatically in your model. For example, you can work
around an incompatibility by creating a rule that replaces an unsupported
Simulink® block in your model with a supported block that is functionally
equivalent. Or you can customize blocks for analysis by creating a rule
that adds constraints or objectives to particular blocks in your model. The
following sections introduce block replacements and illustrate a process for
writing block replacement rules.

About Block Replacements (p. 3-2) Brief overview of block replacements.

Built-In Block Replacements (p. 3-3) Describes the factory default block
replacement rules and library.

Template for Block Replacement
Rules (p. 3-6)

Introduces a template for creating
custom block replacement rules.

Creating Custom Block
Replacements (p. 3-7)

Outlines a process for creating
custom block replacements.

Executing Block Replacements
(p. 3-15)

Describes how to execute block
replacements.

3 Working with Block Replacements

About Block Replacements
The Simulink® Design Verifier™ software can perform block replacements
automatically in a model. That is, it can replace instances of a particular
block in your model with an entirely different block. When performing block
replacements, the software copies your model and replaces blocks in the copy,
leaving your original model unaltered. In this way, you can easily customize a
model for analysis with the Simulink Design Verifier software.

The Simulink Design Verifier software replaces blocks automatically in a
model using

• Libraries of replacement blocks

• Rules that define which blocks to replace and under what conditions

Block replacements are extensible, allowing you to define your own libraries
of replacement blocks and custom block replacement rules. This capability is
beneficial if you need to

• Work around an incompatibility, such as the presence of unsupported
blocks in your model.

• Customize a block for analysis, such as adding constraints to its input
signals or objectives to its output signals.

3-2

Built-In Block Replacements

Built-In Block Replacements
The Simulink® Design Verifier™ software provides a set of block replacement
rules and a corresponding library of replacement blocks. These built-in block
replacements are useful when analyzing models with the Simulink Design
Verifier software. Moreover, they serve as examples that you can examine to
learn how to create your own block replacements.

The following table lists the factory default block replacement rules, available
in the matlabroot\toolbox\sldv\sldv\private directory.

File Name Description

blkrep_rule_lookup_normal.m

blkrep_rule_lookup_configss.m

A rule that replaces Lookup Table blocks with
an implementation that includes test objectives
for each breakpoint and interval specified by the
Vector of input values parameter.

blkrep_rule_lookup2D_normal.m

blkrep_rule_lookup2D_configss.m

A rule that adds Test Condition/Proof Assumption
blocks to the input ports of Lookup Table (2-D)
blocks. Each Test Condition/Proof Assumption
block constrains signal values to the interval
specified by the corresponding breakpoint vector.

blkrep_rule_mpswitch2_normal.m

blkrep_rule_mpswitch2_configss.m

A rule that adds a Test Condition/Proof
Assumption block to the control input port
of Multiport Switch blocks whose Number
of inputs parameter specifies 2. The Test
Condition/Proof Assumption block constrains
signal values to the interval [1, 2] (or [0, 1] if the
block uses zero-based indexing).

blkrep_rule_mpswitch3_normal.m

blkrep_rule_mpswitch3_configss.m

A rule that adds a Test Condition/Proof
Assumption block to the control input port
of Multiport Switch blocks whose Number
of inputs parameter specifies 3. The Test
Condition/Proof Assumption block constrains
signal values to the interval [1, 3] (or [0, 2] if the
block uses zero-based indexing).

3-3

3 Working with Block Replacements

File Name Description

blkrep_rule_mpswitch4_normal.m

blkrep_rule_mpswitch4_configss.m

A rule that adds a Test Condition/Proof
Assumption block to the control input port
of Multiport Switch blocks whose Number
of inputs parameter specifies 4. The Test
Condition/Proof Assumption block constrains
signal values to the interval [1, 4] (or [0, 3] if the
block uses zero-based indexing).

blkrep_rule_mpswitch5_normal.m

blkrep_rule_mpswitch5_configss.m

A rule that adds a Test Condition/Proof
Assumption block to the control input port
of Multiport Switch blocks whose Number
of inputs parameter specifies 5. The Test
Condition/Proof Assumption block constrains
signal values to the interval [1, 5] (or [0, 4] if the
block uses zero-based indexing).

blkrep_rule_switch_normal.m

blkrep_rule_switch_configss.m

A rule that replaces Switch blocks with an
implementation that includes test objectives,
requiring each switch position to be exercised
when the values of the first and third input ports
differ.

blkrep_rule_selector
IndexVecPort_normal.m

blkrep_rule_selector
IndexVecPort_configss.m

A rule that adds a Test Condition/Proof
Assumption block to the index port of Selector
blocks whose Index Option parameter specifies
Index vector (port). The Test Condition/Proof
Assumption block constrains signal values to an
interval whose endpoints are derived from the
values of the Selector block’s Input port size and
Index mode parameters.

blkrep_rule_selector
StartingIdxPort_normal.m

blkrep_rule_selector
StartingIdxPort_configss.m

A rule that adds a Test Condition/Proof
Assumption block to the index port of Selector
blocks whose Index Option parameter
specifies Starting index (port). The Test
Condition/Proof Assumption block constrains
signal values to an interval whose endpoints are
derived from the values of the Selector block’s
Input port size, Output size, and Index mode
parameters.

3-4

Built-In Block Replacements

The library of replacement blocks that corresponds to the factory default
rules resides at

matlabroot/toolbox/sldv/sldv/sldvblockreplacementlib.mdl

Note The Simulink Design Verifier software provides two implementations of
each factory default block replacement rule. Rules whose file names end with
_normal.m replace blocks with Subsystem blocks. Rules whose file names end
with _configss.m replace blocks with Configurable Subsystem blocks. See
“Writing Block Replacement Rules” on page 3-10 for more information.

3-5

3 Working with Block Replacements

Template for Block Replacement Rules
To help you create block replacement rules, the Simulink® Design Verifier™
software provides an annotated M-file template containing a skeleton
implementation of the requisite callbacks. The template resides at

matlabroot/toolbox/sldv/sldv/sldvblockreplacetemplate.m

To create a block replacement rule, make a copy of the template and edit the
copy as necessary to reflect the desired behavior of the rule you are creating.
The comments in the template help to explain how to implement your rule.
See “Writing Block Replacement Rules” on page 3-10 for information about
using the template to write custom block replacement rules.

3-6

Creating Custom Block Replacements

Creating Custom Block Replacements

In this section...

“About Custom Block Replacements” on page 3-7

“Constructing Replacement Blocks” on page 3-7

“Writing Block Replacement Rules” on page 3-10

About Custom Block Replacements
The process of creating custom block replacements in the Simulink® Design
Verifier™ software consists of the following tasks:

• “Constructing Replacement Blocks” on page 3-7

• “Writing Block Replacement Rules” on page 3-10

The Simulink Design Verifier software imposes several restrictions on
replacement blocks. Replacement blocks must

• Use a masked Subsystem block that contains other Simulink® blocks.

• Reside in a block library that is available on your MATLAB® search path.

• Contain Inport and Outport blocks that have default names (e.g., In1 and
Out1).

Note Be sure that you have read “Creating Block Masks” in Using Simulink
before constructing a replacement block.

Constructing Replacement Blocks
To create a replacement block:

1 Create a block library for your replacement block (see “Creating a Library”
in Using Simulink). For example, from the File menu of the Simulink
library window, select New > Library.

3-7

3 Working with Block Replacements

2 In your library, create a subsystem that represents your replacement block
(see “Creating Subsystems” in Using Simulink).

This example uses a subsystem named myReplacementBlock, which
contains a

• Multiport Switch block whose Number of inputs parameter specifies 2

• Test Condition block whose Values parameter specifies {[1, 2]}

3 Create a mask for your subsystem (see “Masking a Subsystem” in Using
Simulink).

3-8

Creating Custom Block Replacements

In this example, the mask dialog box of the subsystem displays a mask
parameter that controls the Require all data port inputs to have the
same data type parameter of the underlying Multiport Switch block. The
masked subsystem includes the following specifications in its Mask Editor:

• The Parameters pane defines a mask parameter named InputSameDT,
which replicates the behavior of the Require all data port inputs
to have the same data type parameter of the underlying Multiport
Switch block.

3-9

3 Working with Block Replacements

Note When creating mask parameters that control the behavior of
parameters associated with their underlying blocks, specify actual
parameter names as dialog variables in the Mask Editor. For instance,
InputSameDT is the actual parameter name that controls the Require
all data port inputs to have the same data type parameter of
the Multiport Switch block; hence, it specifies the name of the dialog
variable in this example.

• The Initialization pane defines the following commands in the
Initialization commands field:

maskInputSameDT = get_param(gcb,'InputSameDT');
blkName = sprintf('/Multiport\nSwitch')
targetBlock = [gcb, blkName];
set_param(targetBlock,'InputSameDT',maskInputSameDT);

4 Save your block library, e.g., as custom_rule.mdl, in a directory that is
available on your MATLAB search path (see “Search Path” in the MATLAB
documentation).

After constructing your replacement block, you are ready to write a custom
block replacement rule, which the next section describes.

Writing Block Replacement Rules
The Simulink Design Verifier software imposes the following restrictions
on block replacement rules:

• The M-file that represents a block replacement rule must include particular
callbacks. The MathWorks recommends that you use the block replacement
rule template as a starting point for writing a custom rule (see “Template
for Block Replacement Rules” on page 3-6).

• The M-file that represents a block replacement rule must be available on
the MATLAB search path.

• You cannot create a rule that replaces Inport, Outport, or Subsystem blocks
in your model.

3-10

Creating Custom Block Replacements

To write a rule for the replacement block you created in the previous section
(see “Constructing Replacement Blocks” on page 3-7):

1 Make a copy of the block replacement rule template

matlabroot/toolbox/sldv/sldv/sldvblockreplacetemplate.m

saving it with an appropriate file name, e.g., custom_rule_switch.m.

Note In the remaining steps, you edit the copy of the template that you
saved.

2 Rename the function, as defined on the first line of the M-file. The function
name should be the same as its file name, without the .m extension.
Optionally, you can edit the comments that follow the function declaration
to create your own M-file help for this rule.

In this example, the first few lines of custom_rule_switch.m declare the
function and its M-file help, which appear as follows:

function rule = custom_rule_switch
%CUSTOM_RULE_SWITCH Custom block replacement rule for
%the Simulink Design Verifier software
%
% This block replacement rule identifies Multiport
% Switch blocks whose "Number of inputs" parameter
% specifies '2' and "Use zero-based indexing" parameter
% specifies 'off'. It replaces such blocks with an
% implementation that includes a Test Condition block
% on the control input signal.

3 Identify the type of block that you wish to replace in your model by
specifying its BlockType parameter as the rule.blockType object.
Consider using the get_param function to obtain the value of the BlockType
parameter for the block you intend to replace. Alternatively, you can
determine this value by referring to “Block-Specific Parameters” in the
Simulink Reference.

3-11

3 Working with Block Replacements

This example replaces Multiport Switch blocks, so the rule.blockType
object specifies the appropriate BlockType parameter:

%% Target Block Type
%
rule.blockType = 'MultiPortSwitch';

4 Identify the replacement block by specifying its full block path name as the
rule.replacementPath object. Consider using the gcb function to get the
full block path name.

This example replaces Multiport Switch blocks with the replacement
block developed in “Constructing Replacement Blocks” on page 3-7, so the
rule.replacementPath object specifies the full block path name:

%% Replacement Library
%
rule.replacementPath = sprintf('custom_rule/myReplacementBlock');

5 Identify the type of subsystem that the Simulink Design Verifier
software uses when replacing blocks by specifying a value for the
rule.replacementMode object. Valid values include:

• Normal — When using this rule, the Simulink Design Verifier
software replaces blocks with a copy of the subsystem specified by the
rule.replacementPath object.

• ConfigurableSubSystem — When using this rule, the Simulink Design
Verifier software replaces blocks with a Configurable Subsystem
block (see Configurable Subsystem in the Simulink Reference). The
Configurable Subsystem block allows you to choose whether it represents
the subsystem specified by the rule.replacementPath object, or the
original block before its replacement.

This example replaces Multiport Switch blocks with an ordinary Subsystem
block:

%% Replacement Mode
%
rule.replacementMode = 'Normal';

3-12

Creating Custom Block Replacements

6 Identify parameter values that the replacement blocks inherit from the
blocks being replaced. You achieve inheritance by mapping the parameter
names in a structure. Each field of the structure represents a parameter
that the replacement block inherits. Specify the value of each field using
the token $original.parameter$, where parameter is the name of the
parameter that belongs to the original block. You can determine block
parameter names by referring to “Model and Block Parameters” in the
Simulink Reference.

The following example defines a structure named parameter that maps the
InputSameDT parameter from the original Multiport Switch blocks to their
replacement blocks:

%% Parameter Handling
%
parameter.InputSameDT = '$original.InputSameDT$';

% Register the parameter mapping for the rule
rule.parameterMap = parameter;

7 Customize the subfunction named replacementTestFunction by
specifying conditions under which the Simulink Design Verifier software
replaces blocks in your model.

The following example instructs the Simulink Design Verifier software
to replace only the Multiport Switch blocks whose NumInputPorts and
zeroidx parameters specify 2 and off, respectively:

function out = replacementTestFunction(blockH)
% Specify the logic that determines when the Simulink Design
% Verifier software replaces a block in your model. For example,
% restrict replacements to only the blocks whose parameters
% specify particular values.
out = false;
numInputPorts = eval(get_param(blockH,'NumInputPorts'));
zeroIdx = eval(get_param(blockH,'zeroidx'));
if numInputPorts==2 && zeroIdx=='off',

out = true;
end

3-13

3 Working with Block Replacements

After constructing a replacement block and writing its corresponding block
replacement rule, you are ready to execute your custom block replacement
(see “Executing Block Replacements” on page 3-15).

3-14

Executing Block Replacements

Executing Block Replacements

In this section...

“Configuring Block Replacements” on page 3-15

“Replacing Blocks in a Model” on page 3-16

Configuring Block Replacements
You must configure block replacement options before executing block
replacements in your model. To specify block replacement options using the
Simulink® GUI:

1 From the Tools menu of your Simulink model, select Design
Verifier > Options.

The Configuration Parameters dialog box displays the Simulink® Design
Verifier™ options.

2 In the Select tree of the Configuration Parameters dialog box, click the
Block Replacements category.

The Configuration Parameters dialog box displays the Block
replacements pane.

3 Enable block replacements by selecting the Apply block replacements
option.

Enabling this option provides access to the List of block replacement
rules and File path of the output model options.

4 In the List of block replacement rules box, enter file names of the
block replacement rules that you wish to execute. The default value,
<FactoryDefaultRules>, executes all the factory default rules (see
“Built-In Block Replacements” on page 3-3).

You can specify multiple rules as a list delimited by spaces, commas, or
carriage returns. The Simulink Design Verifier software executes the rules
in the order that you list them. For example, to execute only a subset
of the factory default rules followed by the custom block replacement

3-15

3 Working with Block Replacements

example from “Creating Custom Block Replacements” on page 3-7, enter
the following file names:

blkrep_rule_mpswitch4_normal
blkrep_rule_lookup_normal
custom_rule_switch

Note The Simulink Design Verifier software replaces a block in your
model only once. If multiple rules apply to the same block, the software
replaces the block using the rule with the highest priority.

5 In the File path of the output model box, specify a directory to which
the Simulink Design Verifier software saves the model that results after
applying the block replacement rules.

6 Click the OK button to apply the changes and close the Configuration
Parameters dialog box.

Alternatively, you can use the sldvoptions function at the command line to
specify the block replacement options associated with a Simulink Design
Verifier options object. See sldvoptions in Chapter 9, “Function Reference”
for more information.

Replacing Blocks in a Model
After enabling the Apply block replacements option (see “Configuring
Block Replacements” on page 3-15), you can execute block replacements in
your model by starting a Simulink Design Verifier analysis. For example, to
trigger block replacements from the Configuration Parameters dialog box, on
the Design Verifier pane, click the Analyze Model button.

Note The Simulink Design Verifier software can execute block replacements
only on models that have no unsaved changes.

When performing block replacements, the Simulink Design Verifier software
copies your model and replaces blocks in the copy, leaving your original model

3-16

Executing Block Replacements

unaltered. Upon completing its analysis, the software generates a report
that displays information about the block replacements it executed (see
“Understanding Simulink® Design Verifier™ Reports” on page 8-8).

Alternatively, you can use the sldvblockreplacement function to execute
block replacements from the command line or an M-file program. The syntax
of the function is

status = sldvblockreplacement('system')

where system is the name of the model whose blocks you aim to replace. See
sldvblockreplacement for more information.

If you execute block replacements programmatically, the Simulink Design
Verifier software displays in the MATLAB® Command Window a table that
lists available block replacement rules:

Configuration of available block replacement rules:

Type: Registration M-File name: Block types: Priority: Active:

Built-in blkrep_rule_mpswitch2_normal.m MultiPortSwitch 5 0

Built-in blkrep_rule_mpswitch2_configss.m MultiPortSwitch 4 0

Built-in blkrep_rule_mpswitch3_normal.m MultiPortSwitch 3 0

Built-in blkrep_rule_mpswitch3_configss.m MultiPortSwitch 6 0

Built-in blkrep_rule_mpswitch4_normal.m MultiPortSwitch 1 1

Built-in blkrep_rule_mpswitch4_configss.m MultiPortSwitch 7 0

Built-in blkrep_rule_mpswitch5_normal.m MultiPortSwitch 2 0

Built-in blkrep_rule_mpswitch5_configss.m MultiPortSwitch 8 0

Built-in blkrep_rule_lookup_normal.m Lookup 1 1

Built-in blkrep_rule_lookup_configss.m Lookup 2 0

Built-in blkrep_rule_switch_normal.m Switch 1 0

Built-in blkrep_rule_switch_configss.m Switch 2 0

Built-in blkrep_rule_lookup2D_normal.m Lookup2D 1 0

Built-in blkrep_rule_lookup2D_configss.m Lookup2D 2 0

Built-in blkrep_rule_selectorIndexVecPort_normal.m Selector 1 0

Built-in blkrep_rule_selectorIndexVecPort_configss.m Selector 2 0

Built-in blkrep_rule_selectorStartingIdxPort_normal.m Selector 3 0

Built-in blkrep_rule_selectorStartingIdxPort_configss.m Selector 4 0

Custom custom_rule_switch.m MultiPortSwitch 2 1

3-17

3 Working with Block Replacements

The list of available block replacement rules includes all built-in rules and any
custom rules that you specified using the List of block replacement rules
option (see “Configuring Block Replacements” on page 3-15). The columns of
the preceding table identify the following information:

• Type — the type of rule, either built-in or custom

• Registration M-File name — the name of the M-file that expresses the rule

• Block types — the BlockType parameter value of the block that the rule
replaces

• Priority — the priority of execution when multiple rules target the same
type of block for replacement

• Active — a flag that indicates whether the rule is active (1) or ignored (0)

Also, the Simulink Design Verifier software displays information about the
block replacements that it performed. For example, the following message
indicates that the software used the custom_rule_switch.m rule to replace a
Multiport Switch block (of the same name) at the top level of the model:

Performed block replacements:

Replacement rule M-file name: Replaced block:
custom_rule_switch.m ./Multiport Switch

3-18

4

Specifying Parameter
Configurations

The Simulink® Design Verifier™ software allows you to treat block parameters
in your model as variables in its analysis. The following sections introduce
parameter configurations and illustrate a process for specifying constraints
on block parameters.

About Parameter Configurations
(p. 4-2)

Brief overview of parameter
configurations.

Template for Parameter
Configurations (p. 4-3)

Introduces the template for creating
a parameter configuration file.

Defining Parameter Configurations
(p. 4-4)

Describes how to define parameter
configurations.

Parameter Configuration Example
(p. 4-7)

Provides an example that walks you
through the process of specifying a
parameter configuration.

4 Specifying Parameter Configurations

About Parameter Configurations
The Simulink® Design Verifier™ software can treat block parameters in your
model as variables during its analysis. For example, suppose you specify a
variable that is defined in the MATLAB® workspace as the value of a block
parameter in your model. You can instruct the Simulink Design Verifier
software to treat that parameter as another input variable in its analysis.
This allows you to

• Extend the results of a proof to consider the impact of additional parameter
values.

• Generate comprehensive test cases for situations in which parameter
values must vary to achieve more complete coverage results (for an
example, see “Parameter Configuration Example” on page 4-7).

4-2

Template for Parameter Configurations

Template for Parameter Configurations
To help you create a parameter configuration file, the Simulink® Design
Verifier™ software provides an annotated M-file template. The template
resides at

matlabroot/toolbox/sldv/sldv/sldv_params_template.m

Alternatively, you can access the template from the Parameters pane in the
Simulink Design Verifier options (see “Parameters Pane” on page 5-8).

To create a parameter configuration file, make a copy of the template and
edit the copy. The comments in the template explain the syntax for defining
parameter configurations. For more information about defining parameter
configurations, see “Defining Parameter Configurations” on page 4-4.

4-3

4 Specifying Parameter Configurations

Defining Parameter Configurations
This section describes how to define parameter configurations and outlines
the required syntax for their definition.

1 Define parameter configurations in an M-file function.

The Simulink® Design Verifier™ software provides an annotated template
for an M-file function that you can use as a starting point (see “Template
for Parameter Configurations” on page 4-3).

2 Specify parameter configurations using a structure whose fields share the
same names as the parameters that you treat as input variables.

For example, suppose you wish to constrain the Gain and Constant value
parameters, m and b, which appear in the following model:

In your parameter configuration file, use the following names for the fields
of the structure:

params.m
params.b

3 Constrain parameters by assigning values to the fields of the structure.

Specify points using the Sldv.Point constructor, which accepts a single
value as its argument. Specify intervals using the Sldv.Interval
constructor, which requires two input arguments, i.e., a lower bound and
an upper bound for the interval. Optionally, you can provide one of the
following strings as a third input argument that specifies inclusion or
exclusion of the interval endpoints:

• '()' — Defines an open interval.

4-4

Defining Parameter Configurations

• '[]' — Defines a closed interval.

• '(]' — Defines a left-open interval.

• '[)' — Defines a right-open interval.

Note By default, the Simulink Design Verifier software considers an
interval to be closed if you omit its two-character string.

The following example constrains m to 3 and b to any value in the closed
interval [0, 10]:

params.m = Sldv.Point(3);
params.b = Sldv.Interval(0, 10);

If the parameters are scalar, you can omit the constructors and instead
specify single values or two-element vectors. For instance, you can
alternatively specify the previous example as:

params.m = 3;
params.b = [0 10];

4 Use cell arrays to specify multiple constraints for a single parameter.

You can specify multiple constraints for a single parameter by using a cell
array. In this case, the Simulink Design Verifier software combines the
constraints using a logical OR operation during its analysis.

The following example constrains m to either 3 or 5, and it constrains b to
any value in the closed interval [0, 10]:

params.m = {3, 5};
params.b = [0 10];

5 Use a 1-by-n structure to specify n sets of parameters.

You can specify several sets of parameters by expanding the size of your
structure.

For instance, the following example uses a 1-by-2 structure to define two
sets of parameters:

4-5

4 Specifying Parameter Configurations

params(1).m = {3, 5};
params(1).b = [0 10];

params(2).m = {12, 15, Sldv.Interval(50, 60, '()')};
params(2).b = 5;

The first parameter set constrains m to either 3 or 5, and it constrains
b to any value in the closed interval [0, 10]. The second parameter set
constrains m to either 12, 15, or any value in the open interval (50, 60), and
it constrains b to 5.

4-6

Parameter Configuration Example

Parameter Configuration Example

In this section...

“About This Example” on page 4-7

“Constructing the Example Model” on page 4-8

“Parameterizing the Constant Block” on page 4-11

“Specifying a Parameter Configuration” on page 4-12

“Analyzing the Example Model” on page 4-13

“Simulating the Test Cases” on page 4-16

About This Example
The sections that follow describe a simple Simulink® model, for which you
generate test cases that achieve decision coverage. However, in this example,
achieving complete decision coverage is possible only when the Simulink®

Design Verifier™ software treats a particular block parameter as a variable
during its analysis. Toward that end, this example will help you understand
how to specify parameter configurations for use with the Simulink Design
Verifier software.

The following workflow guides you through the process of completing this
example:

Task Description See...

1 Construct the example
model.

“Constructing the Example Model” on
page 4-8

2 Specify a variable as the
value of a Constant block
parameter.

“Parameterizing the Constant Block”
on page 4-11

3 Constrain the value of the
variable that the Constant
block specifies.

“Specifying a Parameter
Configuration” on page 4-12

4-7

4 Specifying Parameter Configurations

Task Description See...

4 Generate test cases for your
model and interpret the
results.

“Analyzing the Example Model” on
page 4-13

5 Simulate the test cases
and measure the resulting
decision coverage.

“Simulating the Test Cases” on page
4-16

Constructing the Example Model
This section presents Task 1 of the process that describes how to specify
parameter configurations in the Simulink Design Verifier software. In this
task, you construct a simple Simulink model that you use throughout the
remaining tasks. To complete this task, perform the following steps:

1 Create an empty Simulink model (see “Creating an Empty Model” in Using
Simulink for help with this step).

2 Copy the following blocks into your empty model window (see “Adding
Blocks to Your Model” in the Simulink documentation for help with this
step):

• Two Inport blocks to initiate the input signals, from the Sources library

• A Multiport Switch block to provide simple logic, from the Signal
Routing library

• A Constant block to control the switch, from the Sources library

• An Outport block to receive the output signal, from the Sinks library

3 In your model window, double-click the Multiport Switch block to access its
dialog box and specify its Number of inputs option as 2.

4 In your model window, connect the blocks so that your model looks like this
(see “Connecting Blocks” in Using Simulink for help with this step):

4-8

Parameter Configuration Example

5 In your model window, select Simulation > Configuration Parameters.

The Configuration Parameters dialog box appears.

6 In the Select tree on the left side of the Configuration Parameters dialog
box, click the Solver category (if not already selected). Under Solver
options on the right side, set the Type option to Fixed-step, and then set
the Solver option to discrete (no continuous states).

The Configuration Parameters dialog box appears as follows:

4-9

4 Specifying Parameter Configurations

7 Click the OK button to apply your changes and close the Configuration
Parameters dialog box.

8 Save your model as param_example.mdl (see “Saving a Model” in Using
Simulink for help with this step).

What to do next: Now you are ready to begin Task 2 of this example,
“Parameterizing the Constant Block” on page 4-11.

4-10

Parameter Configuration Example

Parameterizing the Constant Block
This section presents Task 2 of the process that describes how to specify
parameter configurations in the Simulink Design Verifier software. In this
task, you parameterize the Constant block in the model that you created
in the previous task (see “Constructing the Example Model” on page 4-8).
In particular, you specify a variable as the value of the Constant block’s
Constant value parameter. To complete this task, perform the following
steps:

1 In your model window, double-click the Constant block.

The Constant block parameter dialog box appears.

2 In the Constant value box, enter A.

The Constant block parameter dialog box appears as follows:

3 Click the OK button to apply your change and close the Constant block
parameter dialog box.

4-11

4 Specifying Parameter Configurations

4 In the MATLAB® Command Window, enter

A = 1;

This command defines in the MATLAB workspace a variable named A
whose value is 1. The Simulink software resolves the Constant value
parameter to this variable, initializing its value for simulation.

What to do next: Now you are ready to begin Task 3 of this example,
“Specifying a Parameter Configuration” on page 4-12.

Specifying a Parameter Configuration
This section presents Task 3 of the process that describes how to specify
parameter configurations in the Simulink Design Verifier software. In
this task, you customize the parameter configuration file template so
that it constrains the variable that you specified in the previous task (see
“Parameterizing the Constant Block” on page 4-11). To complete this task,
perform the following steps:

1 In your Simulink model window, select Tools > Design Verifier >
Options.

The Simulink Design Verifier software displays its options in the
Configuration Parameters dialog box.

2 In the Select tree on the left side of the Configuration Parameters
dialog box, click the Design Verifier > Parameters category. In the
Parameters pane on the right side, ensure that the Apply parameters
option is enabled.

Enabling the Apply parameters option provides access to the Parameter
configuration file option.

3 Click the Edit button next to the Parameter configuration file option.

The Simulink Design Verifier software opens sldv_params_template.m
in an editor.

4 Edit the template’s text so that it appears as follows:

function params = param_example_function

4-12

Parameter Configuration Example

% This function defines a parameter configuration for the
% example model that the documentation discusses.

params.A = [1 2];

The preceding code renames the function as params_example_function
and constrains parameter A to the closed interval [1 2].

5 Save your changes to the template as params_example_function.m in the
same directory as the example model.

6 In the Configuration Parameters dialog box, click the Browse button
next to the Parameter configuration file option, and then select your
parameter configuration file, params_example_function.m.

7 Click the OK button to apply your change and close the Configuration
Parameters dialog box.

What to do next: Now you are ready to begin Task 4 of this example,
“Analyzing the Example Model” on page 4-13.

Analyzing the Example Model
This section presents Task 4 of the process that describes how to specify
parameter configurations in the Simulink Design Verifier software. In
this task, you execute the Simulink Design Verifier analysis, which uses
the parameter configuration file you customized in the previous task (see
“Specifying a Parameter Configuration” on page 4-12). The software generates
test cases and produces results for you to interpret. To complete this task,
perform the following steps:

1 In your Simulink model window, select Tools > Design Verifier >
Generate Tests.

The Simulink Design Verifier software begins analyzing your model to
generate test cases. When the software completes its analysis, it generates
the following items:

• Simulink Design Verifier report — The Simulink Design Verifier
software displays an HTML report named param_example_report.html.

4-13

4 Specifying Parameter Configurations

• Test harness — The Simulink Design Verifier software displays a
harness model named param_example_harness.mdl.

2 In the Simulink Design Verifier report Table of Contents, click Test
Case 1.

The report displays its Test Case 1 section, which appears as follows:

This section provides details about Test Case 1 that the Simulink Design
Verifier software generated to satisfy a coverage objective in the model. In
this test case, a value of 1 for parameter A satisfies the objective.

4-14

Parameter Configuration Example

3 Go to the Test Case 2 section in the Test Cases chapter.

The Test Case 2 section of the report appears as follows:

This section provides details about Test Case 2, which satisfies another
coverage objective in the model. In this test case, a value of 2 for parameter
A satisfies the objective.

What to do next: Now you are ready to begin Task 5 of this example,
“Simulating the Test Cases” on page 4-16.

4-15

4 Specifying Parameter Configurations

Simulating the Test Cases
This section presents Task 5 of the process that describes how to specify
parameter configurations in the Simulink Design Verifier software. In this
final task, you simulate the test cases that the Simulink Design Verifier
software generated in the previous task (see “Simulating the Test Cases”
on page 4-16). Also, you review the coverage report that results from the
simulation. To complete this task, perform the following steps:

1 Open the test harness model named param_example_harness.mdl (if it
is not already open).

The test harness model appears as follows:

2 The block labeled Inputs in the test harness model is a Signal Builder
block that contains the test case signals. Double-click the Inputs block to
view the test case signals.

The Signal Builder dialog box appears as follows:

4-16

Parameter Configuration Example

3 In the Signal Builder dialog box, click the Run all button .

The Simulink software simulates each of the test cases in succession,
collects coverage data for each simulation, and displays a report of the
combined coverage results at the end of the last simulation.

4 In the model coverage report, review the Summary section:

4-17

4 Specifying Parameter Configurations

This section summarizes the coverage results for the harness model and its
Test Unit subsystem. Observe that the subsystem achieves 100% decision
coverage.

5 In the Summary, click the Test Unit subsystem.

The report displays detailed coverage results for the Test Unit subsystem.

4-18

Parameter Configuration Example

This section reveals that the Multiport Switch block achieves complete
decision coverage because the test cases exercise each of its switch
pathways.

4-19

4 Specifying Parameter Configurations

4-20

5

Configuring Simulink®

Design Verifier™ Options

This chapter provides an overview of the Simulink® Design Verifier™ options
that you specify typically with the Configuration Parameters dialog box. The
following sections step you through the Simulink Design Verifier dialog panes
and describe its options.

Viewing Simulink® Design Verifier™
Options (p. 5-2)

Explains how to view options that
control the Simulink Design Verifier
software.

Configuring Simulink® Design
Verifier™ Options (p. 5-5)

Describes the options that control the
Simulink Design Verifier software.

Saving Simulink® Design Verifier™
Options (p. 5-16)

Discusses how the Simulink Design
Verifier software saves its options.

5 Configuring Simulink® Design Verifier™ Options

Viewing Simulink® Design Verifier™ Options
The Simulink® Design Verifier™ software provides numerous options that
control its behavior when analyzing models. To view its options, from the
Tools menu of your Simulink® model, select Design Verifier > Options.

The Simulink Design Verifier software displays its options in the
Configuration Parameters dialog box.

5-2

Viewing Simulink® Design Verifier™ Options

Typically, you specify values for these options using the Configuration
Parameters dialog box. See “Configuration Parameters Dialog Box” in
Simulink Graphical User Interface for more information about working with
this interface.

5-3

5 Configuring Simulink® Design Verifier™ Options

Note By default, Simulink Design Verifier options do not appear in a model’s
Configuration Parameters dialog box. If you select Design Verifier >
Options from a model’s Tools menu, the Simulink Design Verifier software
associates its options with that model. Afterward, you can access those
options directly from the Configuration Parameters dialog box or Model
Explorer (see “The Model Explorer” in Using Simulink).

Alternatively, you can use the sldvoptions function to view Simulink Design
Verifier options at the command line. Use the following syntax to access
and view programmatically the options associated with the Simulink model
system:

opts = sldvoptions('system');
get(opts)

See sldvoptions in Chapter 9, “Function Reference” for more information.

5-4

Configuring Simulink® Design Verifier™ Options

Configuring Simulink® Design Verifier™ Options

In this section...

“Design Verifier Pane” on page 5-5

“Block Replacements Pane” on page 5-6

“Parameters Pane” on page 5-8

“Test Generation Pane” on page 5-9

“Property Proving Pane” on page 5-11

“Results Pane” on page 5-12

“Report Pane” on page 5-14

Design Verifier Pane
The Design Verifier pane allows you to specify analysis options and
configure Simulink® Design Verifier™ output.

The Design Verifier pane contains the following groups of options:

• “Analysis options” on page 5-6

• “Output” on page 5-6

5-5

5 Configuring Simulink® Design Verifier™ Options

Analysis options
This group contains controls that enable you to specify how the Simulink
Design Verifier software analyzes Simulink® models. It contains the following
controls.

Mode. Specifies the mode in which the Simulink Design Verifier software
operates, either Test generation (the default) or Property proving.

Maximum analysis time. Specifies the maximum time (in seconds) that
the Simulink Design Verifier software spends analyzing the model.

Display unsatisfiable test objectives. If selected, this option causes the
Simulink Design Verifier software to display a warning message in the
Simulation Diagnostics Viewer when it is unable to satisfy a test objective.
See “Simulation Diagnostics Viewer” in Using Simulink for more information.

Output
This group contains controls that enable you to configure Simulink Design
Verifier output. It contains the following controls.

Output directory. Specifies a directory to which the Simulink Design
Verifier software writes its output. Enter a path that is either absolute or
relative to the current directory.

The default value is sldv_output/$ModelName$, where $ModelName$ is a
token that represents the model name.

Make output file names unique by adding a suffix. If selected, this
option causes the Simulink Design Verifier software to append an incremental
numeric suffix to output file names. Selecting this option prevents the
software from overwriting existing files that have the same name.

Block Replacements Pane
The Block Replacements pane allows you to specify options that control how
the Simulink Design Verifier software preprocesses the models it analyzes.

5-6

Configuring Simulink® Design Verifier™ Options

Block replacements
This group contains controls that enable you to specify block replacement
options. It contains the following controls.

Apply block replacements. If selected, this option causes the Simulink
Design Verifier software to replace blocks in the model before its analysis
(see Chapter 3, “Working with Block Replacements”). By default, this option
is disabled. Enabling this option provides access to the List of block
replacement rules and File path of the output model options.

List of block replacement rules. Specifies a list of block replacement
rules that the Simulink Design Verifier software processes before analyzing
the model. This option is accessible only if Apply block replacements is
selected. The software processes the block replacement rules in the order
that you list them.

Specify block replacement rules as a list delimited by spaces, commas, or
carriage returns (see “Configuring Block Replacements” on page 3-15).

5-7

5 Configuring Simulink® Design Verifier™ Options

The default value is <FactoryDefaultRules>. If you specify the default
value, the Simulink Design Verifier software uses its factory default block
replacement rules (see “Built-In Block Replacements” on page 3-3).

File path of the output model. Specifies a directory to which the Simulink
Design Verifier software saves the model that results after applying the block
replacement rules. Enter a pathname that is either absolute or relative to the
pathname specified as the Output directory. This option is accessible only if
Apply block replacements is selected.

The default value is $ModelName$_replacement, where $ModelName$ is a
token that represents the model name.

Parameters Pane
The Parameters pane allows you to specify options that control how the
Simulink Design Verifier software uses parameter configurations when
analyzing models.

Parameters
This group contains controls that enable you to specify parameter
configurations. It contains the following controls.

Apply parameters. If selected (the default), this option causes the Simulink
Design Verifier software to use parameter configurations when analyzing a
model (see Chapter 4, “Specifying Parameter Configurations”). Enabling this
option provides access to the Parameter configuration file option.

Parameter configuration file. Specifies an M-file function that defines
parameter configurations for a model. Click the Browse button to select an
existing M-file function using a file chooser dialog box. Click the Edit button
to open the specified M-file function in an editor.

5-8

Configuring Simulink® Design Verifier™ Options

The default value is sldv_params_template.m, a template that you can edit
and save. The comments in the template explain the syntax you use to specify
parameter configurations.

Tip See the Parameter Identification Example demo for an illustration of how
to use parameter configurations when generating tests cases for a Simulink
model.

Test Generation Pane
The Test Generation pane allows you to specify options that control how the
Simulink Design Verifier software generates tests for the models it analyzes.

Test generation
This group contains controls that enable you to specify test generation options.
It contains the following controls.

Model coverage objectives. Specifies the type of model coverage that
the Simulink Design Verifier software attempts to achieve. Select either
Decision, Condition Decision, MCDC, or None.

Test conditions. This option allows you to enable or disable Test Condition
blocks in the current model either globally or locally. Select one of the
following options:

5-9

5 Configuring Simulink® Design Verifier™ Options

• Use local settings — Enables or disables Test Condition blocks based
on the value of the Enable parameter of each block. If a block’s Enable
parameter is selected, the block is enabled; otherwise, the block is disabled.

• Enable all — Enables all Test Condition blocks in the model regardless of
the settings of their Enable parameters.

• Disable all — Disables all Test Condition blocks in the model regardless
of the settings of their Enable parameters.

Test objectives. This option allows you to enable or disable Test Objective
blocks in the current model either globally or locally. Select one of the
following options:

• Use local settings — Enables or disables Test Objective blocks based
on the value of the Enable parameter of each block. If a block’s Enable
parameter is selected, the block is enabled; otherwise, the block is disabled.

• Enable all — Enables all Test Objective blocks in the model regardless of
the settings of their Enable parameters.

• Disable all — Disables all Test Objective blocks in the model regardless
of the settings of their Enable parameters.

Maximum test case steps. Specifies the maximum number of simulation
steps the Simulink Design Verifier software takes when attempting to satisfy
a test objective.

Test suite optimization. This option allows you to specify the optimization
strategy that the Simulink Design Verifier software uses when generating
test cases. Select one of the following options:

• Combined objectives — Minimizes the number of test cases in a suite by
generating cases that address more than one test objective. Each test case
tends to be long, i.e., it includes many time steps.

• Individual objectives — Maximizes the number of test cases in a suite
by generating cases that each address only one test objective. Each test
case tends to be short, i.e., it includes only a few time steps.

• Large model — Minimizes the number of test cases in a suite by generating
cases that address more than one test objective. This strategy is tailored
for large models that contain nonlinearities and numerous test objectives;

5-10

Configuring Simulink® Design Verifier™ Options

consequently, it tends to use all the time that the Maximum analysis
time option allots.

Property Proving Pane
The Property Proving pane allows you to specify options that control how
the Simulink Design Verifier software proves properties for the models it
analyzes.

Property proving
This group contains controls that enable you to specify property proving
options. It contains the following controls.

Assertion blocks. This option allows you to enable or disable Assertion
blocks in the current model either globally or locally. Select one of the
following options:

• Use local settings — Enables or disables Assertion blocks based on
the value of the Enable assertion parameter of each block. If a block’s
Enable assertion parameter is selected, the block is enabled; otherwise,
the block is disabled.

• Enable all — Enables all Assertion blocks in the model regardless of the
settings of their Enable assertion parameters.

• Disable all — Disables all Assertion blocks in the model regardless of the
settings of their Enable assertion parameters.

Proof assumptions. This option allows you to enable or disable Proof
Assumption blocks in the current model either globally or locally. Select one of
the following options:

5-11

5 Configuring Simulink® Design Verifier™ Options

• Use local settings — Enables or disables Proof Assumption blocks based
on the value of the Enable parameter of each block. If a block’s Enable
parameter is selected, the block is enabled; otherwise, the block is disabled.

• Enable all — Enables all Proof Assumption blocks in the model regardless
of the settings of their Enable parameters.

• Disable all — Disables all Proof Assumption blocks in the model
regardless of the settings of their Enable parameters.

Strategy. Specifies the strategy the Simulink Design Verifier software uses
when proving properties. Select one of the following options:

• Find violation — If this strategy is selected, the Simulink Design Verifier
software searches for property violations within the number of simulation
steps specified by the Maximum violation steps option. Enabling this
option provides access to the Maximum violation steps option.

• Prove — If this strategy is selected, the Simulink Design Verifier software
performs property proofs.

• Prove with violation detection — This strategy combines the Find
violation and Prove strategies. If selected, the Simulink Design Verifier
software searches for property violations within the number of simulation
steps specified by the Maximum violation steps option; then it attempts
to prove properties for which it failed to detect a violation. Enabling this
option provides access to the Maximum violation steps option.

See “Strategies for Proving Properties of Large Models” on page A-13 for
more information.

Maximum violation steps. Specifies the maximum number of simulation
steps over which the Simulink Design Verifier software searches for property
violations. The software does not search beyond the maximum number of
simulation steps that you specify; it does not identify violations that occur
later in a simulation. This option is accessible only if Strategy specifies
either Find violation or Prove with violation detection.

Results Pane
The Results pane allows you to specify options that control how the Simulink
Design Verifier software handles the results that it generates.

5-12

Configuring Simulink® Design Verifier™ Options

The Results pane contains the following groups of options:

• “Harness model options” on page 5-13

• “Data file options” on page 5-14

Harness model options
This group contains controls that enable you to specify how the Simulink
Design Verifier software handles the test harness it produces. It contains
the following controls.

Save test harness as model. If selected, this option causes the Simulink
Design Verifier software to save the test harness it generates as a model file.
Enabling this option provides access to the Harness model file name option.

Harness model file name. Specifies a file name with which the Simulink
Design Verifier software saves the test harness it generates. Enter a
pathname that is either absolute or relative to the pathname specified by
Output directory. This option is accessible only if Save test harness as
model is selected.

The default value is $ModelName$_harness, where $ModelName$ is a token
that represents the model name.

5-13

5 Configuring Simulink® Design Verifier™ Options

Data file options
This group contains controls that enable you to specify how the Simulink
Design Verifier software handles the MAT-file it produces. It contains the
following controls.

Save test data to file. If selected, this option causes the Simulink Design
Verifier software to save the test data it generates to a MAT-file. Enabling
this option provides access to the Data file name option.

Data file name. Specifies a file name with which the Simulink Design
Verifier software saves the MAT-file it generates. Enter a pathname that is
either absolute or relative to the directory specified by Output directory.
This option is accessible only if Save test data to file is selected.

The default value is $ModelName$_sldvdata, where $ModelName$ is a token
that represents the model name.

Include expected output values. If selected, this option causes the
Simulink Design Verifier software to simulate the model using the test
case signals that it produces. For each test case, the software collects the
simulation output values associated with Outport blocks in the top-level
system and includes those values in the MAT-file that it generates (see
“TestCases Field” on page 8-26).

Randomize data that does not affect outcome. If selected, this option
causes the Simulink Design Verifier software to assign random values instead
of zeros to test case or counterexample signals that have no impact on test
or proof objectives in a model. In the Simulink Design Verifier report, the
Generated Input Data table always displays a dash (–) for such signals (see
“Test Cases / Counterexamples Chapter” on page 8-19).

Report Pane
The Report pane allows you to specify options that control how the Simulink
Design Verifier software reports its results.

5-14

Configuring Simulink® Design Verifier™ Options

Report
This group contains controls that enable you to specify report options. It
contains the following controls.

Generate report of the results. If selected, this option causes the Simulink
Design Verifier software to save the HTML report it generates. If you select
this option, you must also enable the Save test harness as model option
(see “Harness model options” on page 5-13).

Enabling this option provides access to the Report file name, Include
screen shots and plots, and Display report options.

Report file name. Specifies a file name with which the Simulink Design
Verifier software saves the HTML report it generates. Enter a pathname that
is either absolute or relative to the directory specified by Output directory.
This option is accessible only if Generate report of the results is selected.

The default value is $ModelName$_report, where $ModelName$ is a token that
represents the model name.

Include screen shots and plots. If selected, this option causes the Simulink
Design Verifier software to capture and include images in the HTML report it
generates after completing its analysis. This option is disabled by default. It
is accessible only if Generate report of the results is selected.

Display report. If selected, this option causes the Simulink Design Verifier
software to display the HTML report it generates after completing its
analysis. This option is enabled by default. It is accessible only if Generate
report of the results is selected.

5-15

5 Configuring Simulink® Design Verifier™ Options

Saving Simulink® Design Verifier™ Options
The Simulink® Design Verifier™ software stores its options as a configuration
set component attached to your model file (see “Configuration Sets” in Using
Simulink®). To save the values of Simulink Design Verifier options that you
specified for your model, simply save your model (see “Saving a Model” in
Using Simulink).

5-16

6

Generating Test Cases

This chapter describes how you can use the Simulink® Design Verifier™
software to generate test cases for your model. The following sections
introduce the notion of test case generation and present an example in which
you generate test cases for a simple Simulink® model:

About Test Case Generation (p. 6-2) Brief overview of test case generation
with the Simulink Design Verifier
software.

Basic Workflow for Generating Test
Cases (p. 6-3)

Outlines a process for generating
test cases for your model.

Generating Test Cases Example
(p. 6-4)

Provides an example that walks you
through the process of generating
test cases for a model.

6 Generating Test Cases

About Test Case Generation
The Simulink® Design Verifier™ software can generate test cases that satisfy
your model’s coverage objectives, including decision coverage, condition
coverage, and modified condition/decision coverage (MC/DC). Test cases assist
you in confirming that a model behaves correctly by demonstrating how its
blocks execute in different modes. When generating test cases, the Simulink
Design Verifier software performs a formal analysis of your model. After
completing its analysis, the software produces a report that details its results
and a test harness model that contains test cases. Simply review the report
and simulate the test harness model to confirm that the test cases achieve
your model’s coverage objectives.

The Simulink Design Verifier software provides two blocks that allow you to
customize test cases for your Simulink® models. Use the Test Objective block
to define the values of a signal that a test case must satisfy. Use the Test
Condition block to constrain the values of a signal during a Simulink Design
Verifier analysis. For more information about these blocks, see Chapter 10,
“Block Reference”.

The Simulink Design Verifier software also provides two functions that extend
the Stateflow® action language, allowing you to customize test cases for your
Stateflow charts. These functions behave identically to the Test Objective and
Test Condition blocks. Use the following syntax to invoke these functions
in a Stateflow chart:

dv.test(expr, "{values}")
dv.condition(expr, "{values}")

where expr represents the objective or condition, e.g., x > 0, and the optional
argument values specifies the intervals that comprise the test objective or
condition. For more information about the values argument, see “Specifying
Test Objectives” on page 10-19 and “Specifying Test Conditions” on page 10-13.

6-2

Basic Workflow for Generating Test Cases

Basic Workflow for Generating Test Cases
Here is the recommended workflow for generating test cases for your model:

1 Ensure that your model is compatible for use with the Simulink® Design
Verifier™ software (for an example, see “Checking Compatibility of the
Example Model” on page 6-6).

2 Optionally, instrument your model with blocks that specify test objectives
and test conditions (for an example, see “Customizing Test Generation” on
page 6-21).

3 Specify Simulink Design Verifier options that control how it generates test
cases for your model (for an example, see “Configuring Test Generation
Options” on page 6-10).

4 Execute the Simulink Design Verifier analysis and review its results
(for examples, see “Analyzing the Example Model” on page 6-13 and
“Reanalyzing the Example Model” on page 6-25).

See “Generating Test Cases Example” on page 6-4 for an exercise that
demonstrates this workflow.

6-3

6 Generating Test Cases

Generating Test Cases Example

In this section...

“About This Example” on page 6-4

“Constructing the Example Model” on page 6-5

“Checking Compatibility of the Example Model” on page 6-6

“Configuring Test Generation Options” on page 6-10

“Analyzing the Example Model” on page 6-13

“Customizing Test Generation” on page 6-21

“Reanalyzing the Example Model” on page 6-25

About This Example
The sections that follow describe a simple Simulink® model, for which you
generate test cases that achieve decision coverage. This example will help you
understand the test generation capabilities of the Simulink® Design Verifier™
software.

The following workflow guides you through the process of completing this
example:

Task Description See...

1 Construct the example
model.

“Constructing the Example Model” on
page 6-5

2 Ensure your model’s
compatibility with the
Simulink Design Verifier
software.

“Checking Compatibility of the
Example Model” on page 6-6

3 Configure the Simulink
Design Verifier software to
generate tests.

“Configuring Test Generation
Options” on page 6-10

4 Generate test cases for your
model and interpret the
results.

“Analyzing the Example Model” on
page 6-13

6-4

Generating Test Cases Example

Task Description See...

5 Add a Test Condition block
to customize test generation.

“Customizing Test Generation” on
page 6-21

6 Generate test cases for
your modified model and
interpret the results.

“Reanalyzing the Example Model” on
page 6-25

Constructing the Example Model
This section presents Task 1 of the process that describes how to generate test
cases with the Simulink Design Verifier software. In this task, you construct
a simple Simulink model that you use throughout the remaining tasks. To
complete this task, perform the following steps:

1 Create an empty Simulink model (see “Creating a New Model” in the
Simulink documentation for help with this step).

2 Copy the following blocks into your empty model window (see “Adding
Blocks to Your Model” in the Simulink documentation for help with this
step):

• An Inport block, from the Sources library, to initiate the input signal
whose value the Simulink Design Verifier software controls

• A Switch block to provide simple logic, from the Signal Routing library

• Two Constant blocks to serve as Switch block data inputs, from the
Sources library

• An Outport block to receive the output signal, from the Sinks library

3 Double-click one of the Constant blocks in your model and specify its
Constant value parameter as 2.

4 Connect the blocks such that your model appears similar to the
following (see “Connecting Blocks in the Model Window” in the Simulink
documentation for help with this step):

6-5

6 Generating Test Cases

5 Save your model as example.mdl (see “Saving a Model” in the Simulink
documentation for help with this step).

What to do next: Now you are ready to begin Task 2 of this example,
“Checking Compatibility of the Example Model” on page 6-6.

Checking Compatibility of the Example Model
This section presents Task 2 of the process that describes how to generate test
cases with the Simulink Design Verifier software. In this task, you ensure
that a model is compatible for use with the Simulink Design Verifier software.
Specifically, you check the compatibility of the simple Simulink model that
you created in the previous task (see “Constructing the Example Model” on
page 6-5). To complete this task, perform the following steps:

1 In your Simulink model window, select Tools > Design Verifier > Check
Model Compatibility.

The Simulink Design Verifier software displays the following log window,
which indicates that your model is incompatible:

6-6

Generating Test Cases Example

It also displays the following incompatibility error in the Simulation
Diagnostics Viewer:

6-7

6 Generating Test Cases

The error message informs you that the Simulink Design Verifier software
does not support variable-step solvers. To work around this incompatibility,
you must use a fixed-step solver.

2 In your Simulink model window, select Simulation > Configuration
Parameters.

The Configuration Parameters dialog box appears.

3 In the Select tree on the left side of the Configuration Parameters dialog
box, click the Solver category (if not already selected). Under Solver
options on the right side, set the Type option to Fixed-step, and then set
the Solver option to discrete (no continuous states).

The Configuration Parameters dialog box appears as follows:

6-8

Generating Test Cases Example

4 Click the OK button to apply your changes and close the Configuration
Parameters dialog box.

5 Recheck the compatibility of your model. In your Simulink model window,
select Tools > Design Verifier > Check Model Compatibility.

The Simulink Design Verifier software displays the following log window,
which confirms that your model is compatible for analysis:

6-9

6 Generating Test Cases

What to do next: Now you are ready to begin Task 3 of this example,
“Configuring Test Generation Options” on page 6-10.

Configuring Test Generation Options
This section presents Task 3 of the process that describes how to generate test
cases with the Simulink Design Verifier software. In this task, you configure
the Simulink Design Verifier software to generate test cases that achieve
complete decision coverage for the simple Simulink model that you created
in a previous task (see “Constructing the Example Model” on page 6-5). To
complete this task, perform the following steps:

1 In your Simulink model window, select Tools > Design Verifier > Options
(see “Viewing Simulink® Design Verifier™ Options” on page 5-2 for help
with this step).

6-10

Generating Test Cases Example

The Simulink Design Verifier software displays its options in the
Configuration Parameters dialog box.

2 In the Select tree on the left side of the Configuration Parameters dialog
box, click the Design Verifier category (if not already selected). Under
Analysis options on the right side, ensure that the Mode option specifies
Test generation.

3 In the Select tree on the left side of the Configuration Parameters dialog
box, click the Test Generation category.

The Configuration Parameters dialog box displays the Test Generation
pane.

4 On the Test Generation pane, specify the value of the Model coverage
objectives parameter as Decision.

The Configuration Parameters dialog box appears as follows:

6-11

6 Generating Test Cases

5 Click OK to apply your change and close the Configuration Parameters
dialog box.

Note Using the Test Generation pane, you can optionally specify values
for other parameters that control how the Simulink Design Verifier software
generates test cases for your model. See “Test Generation Pane” on page 5-9
for more information.

What to do next: Now you are ready to begin Task 4 of this example,
“Analyzing the Example Model” on page 6-13.

6-12

Generating Test Cases Example

Analyzing the Example Model
This section presents Task 4 of the process that describes how to generate test
cases with the Simulink Design Verifier software. In this task, you execute
the Simulink Design Verifier analysis, which you configured in the previous
task (see “Configuring Test Generation Options” on page 6-10). The Simulink
Design Verifier software generates test cases for your example model and
produces results for you to interpret. To complete this task, perform the
following steps:

1 In your Simulink model window, select Tools > Design
Verifier > Generate Tests.

The Simulink Design Verifier software begins analyzing your model to
generate test cases. During its analysis, the software displays a log window.

6-13

6 Generating Test Cases

The Simulink Design Verifier log window updates you on the progress of
the analysis, providing information such as the number of test objectives
processed and how many of those objectives were satisfied. Also, this
dialog box includes a Stop button that you can click to terminate the proof
at anytime.

When the Simulink Design Verifier software completes its analysis, it
displays the following items:

6-14

Generating Test Cases Example

• Simulink Design Verifier report — The software displays an HTML
report named example_report.html.

• Test harness — The software displays a harness model named
example_harness.mdl.

The remaining steps in this section help you interpret the results that
you obtained.

2 Review the Simulink Design Verifier report. The report includes the
following Table of Contents whose items you can click to navigate to
particular chapters and sections:

a In the Table of Contents, click Summary.

The report displays its Summary chapter, which begins as follows:

6-15

6 Generating Test Cases

The Summary chapter provides an overview of the analysis results.
In particular, the Simulink Design Verifier software satisfied two test
objectives in your model.

b In the Summary chapter under Analysis Information, click
Objectives Satisfied.

The report displays its Objectives Satisfied table in the Test Objectives
chapter.

6-16

Generating Test Cases Example

This table lists the test objectives that the Simulink Design Verifier
software satisfied. Specifically, it describes the test objectives that
provide decision coverage for a Switch block. You can locate the model
item by clicking Switch; the software highlights the corresponding
Switch block in your model window.

c In the Objectives Satisfied table under the # column, click 1.

The report displays additional information about test objective 1.

This table informs you that the Simulink Design Verifier software
satisfied both test objectives associated with the Switch block in your
model, for which it generated two test cases.

d Under the Test Cases column of the table, click TC 2.

The report displays its Test Case 2 section.

6-17

6 Generating Test Cases

This section provides details about a test case that the Simulink Design
Verifier software generated to achieve an objective in your model. This
test case achieves test objective 1, which involves the Switch block
passing its third input. Specifically, the software determined that a
value of -1 for the Switch block control signal enables the block to pass
its third input.

3 Review the harness model named example_harness.mdl, which appears as
follows:

6-18

Generating Test Cases Example

The harness model contains the following items:

• Signal Builder block named Inputs — Contains groups of signals that
achieve test objectives in your model.

• Subsystem block named Test Unit — Contains a copy of your model.

• DocBlock named Test Case Explanation — Provides a textual
description of the test cases that the Simulink Design Verifier software
generates.

Note See the Simulink Reference for more information about interacting
with blocks such as the Signal Builder, Subsystem, and DocBlock.

To simulate the test harness and confirm that the test cases achieve
complete decision coverage:

a Double-click the Inputs block.

The Signal Builder dialog box displays the test case signals.

6-19

6 Generating Test Cases

b In the Signal Builder dialog box, click the Run all button .

The Simulink software simulates the test harness using all the test
cases, collects model coverage information, and displays a coverage
report whose Summary section appears as follows:

6-20

Generating Test Cases Example

The coverage report indicates the Simulink Design Verifier software
generated test cases that achieve complete decision coverage for your
example model (see “Understanding Model Coverage Reports” in the
Simulink® Verification and Validation™ User’s Guide).

What to do next: Now you are ready to begin Task 5 of this example,
“Customizing Test Generation” on page 6-21.

Customizing Test Generation
This section presents Task 5 of the process that describes how to generate test
cases with the Simulink Design Verifier software. In this task, you modify
the simple Simulink model for which you attained complete decision coverage
in the previous task (see “Analyzing the Example Model” on page 6-13).
Specifically, you customize test generation by adding and configuring a Test
Condition block. To complete this task, perform the following steps:

1 In the MATLAB® Command Window, enter sldvlib.

The Simulink Design Verifier library appears.

6-21

6 Generating Test Cases

2 Copy the Test Condition block to your model by dragging it from the
Simulink Design Verifier library to your model window.

3 In your model window, insert the Test Condition block between the Switch
and Outport blocks (see “Inserting Blocks in a Line” in the Simulink
documentation for help with this step).

Your model should look like this:

6-22

Generating Test Cases Example

4 Double-click the Test Condition block in your model to access its attributes.

The Test Condition block parameter dialog box appears.

5 In the Values box, enter [-0.1, 0.1]. When generating test cases for this
model, the Simulink Design Verifier software will constrain the signal
values entering the Switch block control port to the specified interval.

6-23

6 Generating Test Cases

6 Click OK to apply your changes and close the Test Condition block
parameter dialog box.

What to do next: Now you are ready to begin Task 6 of this example,
“Reanalyzing the Example Model” on page 6-25.

6-24

Generating Test Cases Example

Reanalyzing the Example Model
This section presents Task 6 of the process that describes how to generate test
cases with the Simulink Design Verifier software. In this task, you execute
the Simulink Design Verifier analysis on the simple Simulink model that you
modified in the previous task (see “Customizing Test Generation” on page
6-21). To observe how a Test Condition block might affect test generation,
compare the result of this analysis to the result that you obtained in a
previous task (see “Analyzing the Example Model” on page 6-13). To complete
this task, perform the following steps:

1 In your Simulink model window, select Tools > Design
Verifier > Generate Tests.

The Simulink Design Verifier software displays a log window and begins
analyzing your model to generate test cases.

When the software completes the analysis, it displays a new Simulink
Design Verifier report named example_report1.html.

2 Review the Simulink Design Verifier report.

a In the Table of Contents, click Summary.

The report displays its Summary chapter, which begins as follows:

6-25

6 Generating Test Cases

The Summary chapter indicates that the Simulink Design Verifier
software satisfied two test objectives in your model.

b In the Summary chapter under Analysis Information, click
Objectives Satisfied.

The report displays its Objectives Satisfied table in the Test Objectives
chapter.

6-26

Generating Test Cases Example

This table lists the test objectives that the Simulink Design Verifier
software satisfied. It also identifies any active constraints that the
software encountered during its analysis. Consequently, this section lists
the Test Condition block that you added in the previous task to constrain
the value of the Switch block control signal to the interval [-0.1, 0.1].

c In the Objectives Satisfied table under the # column, click 1.

The report displays additional information about test objective 1, as
shown here.

This table informs you that the Simulink Design Verifier software
satisfied both test objectives associated with the Switch block in your
model, for which it generated two test cases.

d Under the Test Cases column of the table, click TC 2.

The report displays its Test Case 2 section, which appears as follows:

6-27

6 Generating Test Cases

This section provides details about a test case that the Simulink Design
Verifier software generated to achieve an objective in your model. This
test case achieves test objective 1, which involves the Switch block
passing its third input. Although the Test Condition block restricted
the domain of input signals to the interval [-0.1, 0.1], the software
determined that a value of -0.05 for the Switch block control signal
satisfies the objective.

3 Simulate the harness model named example_harness1.mdl and confirm
that the test case achieves complete decision coverage:

a Double-click the Inputs block.

The Signal Builder dialog box displays the test case signals.

6-28

Generating Test Cases Example

b In the Signal Builder dialog box, click the Run all button .

The Simulink software simulates the test harness using both test cases,
collects model coverage information, and displays a coverage report
whose Summary section appears as follows:

6-29

6 Generating Test Cases

The coverage report indicates the Simulink Design Verifier software
generated test cases that achieve complete decision coverage for your
example model.

6-30

7

Proving Properties of a
Model

This chapter describes how you can use the Simulink® Design Verifier™
software to prove properties of your model. The following sections introduce
the notion of property proofs and present an example in which you prove a
property of a simple Simulink® model:

About Property Proofs (p. 7-2) Brief overview of proving properties
with the Simulink Design Verifier
software.

Basic Workflow for Proving Model
Properties (p. 7-3)

Outlines a process for proving
properties of your model.

Proving Model Properties Example
(p. 7-4)

Provides an example that walks you
through the process of proving model
properties.

7 Proving Properties of a Model

About Property Proofs
The Simulink® Design Verifier™ software can prove properties of your model.
Here, the term property refers to a logical expression of signal values in a
model. For example, you can specify that a signal in your model should attain
a particular value or range of values during simulation. You can then use the
Simulink Design Verifier software to prove whether such properties are valid.
The software performs a formal analysis of your model to prove or disprove
the specified properties. If the software disproves a property, it provides a
counterexample that demonstrates a property violation.

The Simulink Design Verifier software provides two blocks that allow you to
specify properties in your Simulink® models. Use the Proof Objective block to
define the values of a signal that the Simulink Design Verifier software will
prove. Use the Proof Assumption block to constrain the values of a signal
during a proof. For more information about these blocks, refer to Chapter
10, “Block Reference”.

Note Blocks from the Model Verification library in the Simulink software
behave like a Proof Objective block during Simulink Design Verifier proofs.
Hence, you can use Assertion blocks and other Model Verification blocks to
specify properties of your model. See “Model Verification” in the Simulink
Reference for more information about these blocks.

The Simulink Design Verifier software also provides two functions that
extend the Stateflow® action language, allowing you to specify properties
in your Stateflow charts. These functions behave identically to the Proof
Objective and Proof Assumption blocks. Use the following syntax to invoke
these functions in a Stateflow chart:

dv.prove(expr, "{values}")
dv.assume(expr, "{values}")

where expr represents the objective or assumption, e.g., x > 0, and the
optional argument values specifies the intervals that comprise the proof
objective or assumption. For more information about the values argument,
see “Specifying Proof Objectives” on page 10-8 and “Specifying Proof
Assumptions” on page 10-2.

7-2

Basic Workflow for Proving Model Properties

Basic Workflow for Proving Model Properties
Here is the recommended workflow for proving properties of your model:

1 Ensure that your model is compatible for use with the Simulink® Design
Verifier™ software (for an example, see “Checking Compatibility of the
Example Model” on page 7-6).

2 Instrument your model with blocks that specify proof objectives and proof
assumptions (for examples, see “Instrumenting the Example Model” on
page 7-10 and “Customizing the Example Proof” on page 7-23).

3 Specify Simulink Design Verifier options that control how it proves the
properties of your model (for an example, see “Configuring Property
Proving Options” on page 7-13).

4 Execute the Simulink Design Verifier analysis and review its results
(for examples, see “Analyzing the Example Model” on page 7-15 and
“Reanalyzing the Example Model” on page 7-25).

See “Proving Model Properties Example” on page 7-4 for an exercise that
demonstrates this workflow.

7-3

7 Proving Properties of a Model

Proving Model Properties Example

In this section...

“About This Example” on page 7-4

“Constructing the Example Model” on page 7-5

“Checking Compatibility of the Example Model” on page 7-6

“Instrumenting the Example Model” on page 7-10

“Configuring Property Proving Options” on page 7-13

“Analyzing the Example Model” on page 7-15

“Customizing the Example Proof” on page 7-23

“Reanalyzing the Example Model” on page 7-25

About This Example
The sections that follow describe a simple Simulink® model, for which you
prove a property that you specify using a Proof Objective block. This example
will help you understand the property proving capabilities of the Simulink®

Design Verifier™ software.

The following workflow guides you through the process of completing this
example:

Task Description See...

1 Construct the example
model.

“Constructing the Example Model” on
page 7-5

2 Ensure your model’s
compatibility with the
Simulink Design Verifier
software.

“Checking Compatibility of the
Example Model” on page 7-6

3 Add a Proof Objective block
to your model to prepare for
its proof.

“Instrumenting the Example Model”
on page 7-10

7-4

Proving Model Properties Example

Task Description See...

4 Configure the Simulink
Design Verifier software to
prove properties.

“Configuring Property Proving
Options” on page 7-13

5 Prove a property of your
model and interpret the
results.

“Analyzing the Example Model” on
page 7-15

6 Add a Proof Assumption
block to customize the proof.

“Customizing the Example Proof” on
page 7-23

7 Prove a property of your
modified model and
interpret the results.

“Reanalyzing the Example Model” on
page 7-25

Constructing the Example Model
This section presents Task 1 of the process that describes how to implement
an example proof with the Simulink Design Verifier software. In this task, you
construct a simple Simulink model that you use throughout the remaining
tasks. To complete this task, perform the following steps:

1 Create an empty Simulink model (see “Creating a New Model” in the
Simulink documentation for help with this step).

2 Copy the following blocks into your empty model window (see “Adding
Blocks to Your Model” in the Simulink documentation for help with this
step):

• An Inport block, from the Sources library, to initiate the input signal
whose value the Simulink® Design Verifier software controls

• A Compare To Zero block to provide simple logic, from the Logic and
Bit Operations library

• An Outport block to receive the output signal, from the Sinks library

3 Connect these blocks such that your model appears similar to the
following (see “Connecting Blocks in the Model Window” in the Simulink
documentation for help with this step):

7-5

7 Proving Properties of a Model

4 Save your model as example.mdl (see “Saving a Model” in the Simulink
documentation for help with this step).

What to do next: Now you are ready to begin Task 2 of this example,
“Checking Compatibility of the Example Model” on page 7-6.

Checking Compatibility of the Example Model
This section presents Task 2 of the process that describes how to implement
an example proof with the Simulink Design Verifier software. In this task, you
ensure that a model is compatible for use with the Simulink Design Verifier
software. Specifically, you check the compatibility of the simple Simulink
model that you created in the previous task (see “Constructing the Example
Model” on page 7-5). To complete this task, perform the following steps:

1 In your Simulink model window, select Tools > Design Verifier > Check
Model Compatibility.

The Simulink Design Verifier software displays the following log window,
which indicates that your model is incompatible:

7-6

Proving Model Properties Example

It also displays the following incompatibility error in the Simulation
Diagnostics Viewer:

7-7

7 Proving Properties of a Model

The error message informs you that the Simulink Design Verifier software
does not support variable-step solvers. To work around this incompatibility,
you must use a fixed-step solver.

2 In your Simulink model window, select Simulation > Configuration
Parameters.

The Configuration Parameters dialog box appears.

3 In the Select tree on the left side of the Configuration Parameters dialog
box, click the Solver category (if not already selected). Under Solver
options on the right side, set the Type option to Fixed-step, and then set
the Solver option to discrete (no continuous states).

The Configuration Parameters dialog box appears as follows:

7-8

Proving Model Properties Example

4 Click the OK button to apply your changes and close the Configuration
Parameters dialog box.

5 Recheck the compatibility of your model. In your Simulink model window,
select Tools > Design Verifier > Check Model Compatibility.

The Simulink Design Verifier software displays the following log window,
which confirms that your model is compatible for analysis:

7-9

7 Proving Properties of a Model

What to do next: Now you are ready to begin Task 3 of this example,
“Instrumenting the Example Model” on page 7-10.

Instrumenting the Example Model
This section presents Task 3 of the process that describes how to implement
an example proof with the Simulink Design Verifier software. In this task,
you prepare a model so that you can prove its properties with the Simulink
Design Verifier software. Specifically, you instrument the simple Simulink
model that you created in a previous task (see “Constructing the Example
Model” on page 7-5) by adding and configuring a Proof Objective block. To
complete this task, perform the following steps:

1 In the MATLAB® Command Window, enter sldvlib.

The Simulink Design Verifier library appears.

7-10

Proving Model Properties Example

2 Copy the Proof Objective block to your model by dragging it from the
Simulink Design Verifier library to your model window.

3 In your model window, insert the Proof Objective block between the
Compare To Zero and Outport blocks (see “Inserting Blocks in a Line” in
the Simulink documentation for help with this step).

Your model should look like this:

4 Double-click the Proof Objective block in your model to access its attributes.

7-11

7 Proving Properties of a Model

The Proof Objective block parameter dialog box appears.

5 In the Values box, enter 1. The Simulink Design Verifier software will
attempt to prove that the signal output by the Compare To Zero block
always attains this value for any signals that it receives.

6 Click OK to apply your changes and close the Proof Objective block
parameter dialog box.

What to do next: Now you are ready to begin Task 4 of this example,
“Configuring Property Proving Options” on page 7-13.

7-12

Proving Model Properties Example

Configuring Property Proving Options
This section presents Task 4 of the process that describes how to implement
an example proof with the Simulink Design Verifier software. In this task,
you configure the Simulink Design Verifier software to prove properties of
the simple Simulink model that you instrumented in the previous task (see
“Instrumenting the Example Model” on page 7-10). To complete this task,
perform the following steps:

1 In your Simulink model window, select Tools > Design Verifier > Options
(see “Viewing Simulink® Design Verifier™ Options” on page 5-2 for help
with this step).

The Simulink Design Verifier software displays its options in the
Configuration Parameters dialog box.

2 In the Select tree on the left side of the Configuration Parameters dialog
box, click the Design Verifier category (if not already selected). Under
Analysis options on the right side, set the Mode option to Property
proving.

The Configuration Parameters dialog box appears as follows:

7-13

7 Proving Properties of a Model

3 Click OK to apply your changes and close the Configuration Parameters
dialog box.

Note Using the Property Proving pane, you can optionally specify values
for other parameters that control how the Simulink Design Verifier software
proves properties of your model. See “Property Proving Pane” on page 5-11
for more information.

What to do next: Now you are ready to begin Task 5 of this example,
“Analyzing the Example Model” on page 7-15.

7-14

Proving Model Properties Example

Analyzing the Example Model
This section presents Task 5 of the process that describes how to implement
an example proof with the Simulink Design Verifier software. In this task,
you execute the Simulink Design Verifier analysis, which you configured in
the previous task (see “Configuring Property Proving Options” on page 7-13).
The Simulink Design Verifier software proves a property of your example
model and produces results for you to interpret. To complete this task,
perform the following steps:

1 In your Simulink model window, select Tools > Design Verifier > Prove
Properties.

The Simulink Design Verifier software begins analyzing your model to
prove its properties. During its analysis, the software displays a log window.

7-15

7 Proving Properties of a Model

The Simulink Design Verifier log window updates you on the progress of
the proof, providing information such as the number of objectives processed
and how many of those objectives were either satisfied or falsified. Also,
this dialog box includes a Stop button that you can click to terminate the
proof at anytime.

When the Simulink Design Verifier software completes its analysis, it
displays the following items:

7-16

Proving Model Properties Example

• Simulink Design Verifier report — The software displays an HTML
report named example_report.html.

• Test harness — The software displays a harness model named
example_harness.mdl.

The remaining steps in this section help you interpret the results that
you obtained.

2 Review the Simulink Design Verifier report. The report includes the
following Table of Contents whose items you can click to navigate to
particular chapters and sections:

a In the Table of Contents, click Summary.

The report displays its Summary chapter, which begins as follows:

7-17

7 Proving Properties of a Model

The Summary chapter provides an overview of the analysis results.
In particular, the Simulink Design Verifier software identified a
counterexample that falsifies an objective in your model.

b In the Summary chapter under Analysis Information, click
Objectives Falsified with Counterexamples.

The report displays its Objectives Falsified with Counterexamples table
in the Proof Objectives chapter.

7-18

Proving Model Properties Example

This table lists the proof objectives that the Simulink Design Verifier
software disproved using a counterexample it generated. You can locate
the objective in your model window by clicking Proof Objective; the
software highlights the corresponding Proof Objective block in your
model window.

c In the Objectives Falsified with Counterexamples table under the #
column, click 1.

The report displays information about proof objective 1.

This table informs you that the Simulink Design Verifier software
disproved a proof objective that you specified in your model, for which it
generated a counterexample.

d Under the Test Cases column of the table, click TC 1.

The report displays its Counterexample 1 section.

7-19

7 Proving Properties of a Model

This section provides details about the counterexample that the
Simulink Design Verifier software generated to disprove an objective
in your model. In this counterexample, a signal value of 255 falsifies
the objective that you specified using the Proof Objective block in your
model. That is, 255 is not less than or equal to 0, which causes the
Compare To Zero block to return 0 (false) instead of 1 (true).

3 Review the harness model named example_harness.mdl, which appears as
follows:

7-20

Proving Model Properties Example

The harness model contains the following items:

• Signal Builder block named Inputs — Contains groups of signals that
falsify proof objectives in your model.

• Subsystem block named Test Unit — Contains a copy of your model.

• DocBlock named Test Case Explanation — Provides a textual
description of the counterexamples that the Simulink Design Verifier
software generates.

Note See the Simulink Reference for more information about interacting
with blocks such as the Signal Builder, Subsystem, and DocBlock.

You can simulate the harness model to observe the counterexample that
falsifies the proof objective in your model:

a In the MATLAB Command Window, enter simulink to open the
Simulink library (if not already open).

7-21

7 Proving Properties of a Model

The Simulink library window appears.

b From the Sinks library, copy a Scope block into your harness model
window. The Scope block will allow you to see the value of the signal
output by the Compare To Zero block in your model.

c In your harness model window, connect the output signal of the Test
Unit subsystem to the Scope block.

Your model should appear similar to the following:

d In your harness model window, select Simulation > Start to begin the
simulation.

The Simulink software simulates the harness model.

e In your harness model window, double-click the Scope block to open its
display window.

The Scope window appears as follows:

7-22

Proving Model Properties Example

The Scope block displays the value of the signal output by the Compare
To Zero block in your model. In this example, the Compare To Zero block
returns 0 (false) throughout the simulation. Recall from a previous
step (see “Instrumenting the Example Model” on page 7-10) that you
specified that the proof objective in your model is 1 (true). Hence, the
counterexample that the Signal Builder block supplies falsifies the proof
objective.

What to do next: Now you are ready to begin Task 6 of this example,
“Customizing the Example Proof” on page 7-23.

Customizing the Example Proof
This section presents Task 6 of the process that describes how to implement
an example proof with the Simulink Design Verifier software. In this task,
you modify the simple Simulink model whose proof objective the Simulink
Design Verifier software disproved in the previous task (see “Analyzing the
Example Model” on page 7-15). Specifically, you customize the proof by adding
and configuring a Proof Assumption block. To complete this task, perform the
following steps:

7-23

7 Proving Properties of a Model

1 If the Simulink Design Verifier library is not already open, type sldvlib in
the MATLAB Command Window.

The Simulink Design Verifier library appears.

2 Copy the Proof Assumption block to your model (example.mdl) by dragging
it from the Simulink Design Verifier library to your model window.

3 In your model window, insert the Proof Assumption block between the
Inport and Compare To Zero blocks.

Your model should appear similar to the following:

4 Double-click the Proof Assumption block in your model to access its
attributes.

The Proof Assumption block parameter dialog box appears.

5 In the Values box, enter [-1, 0]. When proving properties of this model,
the Simulink Design Verifier software will constrain the signal values
entering the Compare To Zero block to the specified interval.

7-24

Proving Model Properties Example

6 Click OK to apply your changes and close the Proof Assumption block
parameter dialog box.

What to do next: Now you are ready to begin Task 7 of this example,
“Reanalyzing the Example Model” on page 7-25.

Reanalyzing the Example Model
This section presents Task 7 of the process that describes how to implement
an example proof with the Simulink Design Verifier software. In this task, you
execute the Simulink Design Verifier analysis on the simple Simulink model
that you modified in the previous task (see “Customizing the Example Proof”

7-25

7 Proving Properties of a Model

on page 7-23). To observe how Proof Assumption blocks affect proofs, compare
the result of this analysis to the result that you obtained in a previous task
(see “Analyzing the Example Model” on page 7-15). To complete this task,
perform the following steps:

1 In your Simulink model window, select Tools > Design Verifier > Prove
Properties.

The Simulink Design Verifier software displays a log window and begins
analyzing your model to prove its properties.

When the software completes the analysis, it displays a new Simulink
Design Verifier report named example_report1.html.

Note If the Simulink Design Verifier software satisfies all proof objectives
in your model, it does not generate a harness model.

2 Review the Simulink Design Verifier report.

a In the Table of Contents, click Summary.

The report displays its Summary chapter, which begins as follows:

7-26

Proving Model Properties Example

The Summary chapter indicates that the Simulink Design Verifier
software proved an objective in your model.

b In the Summary chapter under Analysis Information, click
Objectives Proven Valid.

The report displays its Objectives Proven Valid table in the Proof
Objectives chapter.

7-27

7 Proving Properties of a Model

This table lists the proof objectives that the Simulink Design Verifier
software proved to be valid. It also identifies any active constraints on
which the validity of the objectives depend. Consequently, this section
lists the Proof Assumption block that you added in the previous task to
constrain the signal value to the interval [-1, 0].

c In the Objectives Proven Valid table under the # column, click 1.

The report displays information about proof objective 1, as shown here.

This table informs you that the Simulink Design Verifier software
proved an objective that you specified in your model. Because the
Proof Assumption block restricted the domain of the input signals to
the interval [-1, 0], the software was able to prove that this interval
contains no values that are greater than zero, thereby satisfying the
proof objective.

7-28

8

Reviewing the Results

The Simulink® Design Verifier™ software produces several artifacts after it
analyzes your model. Depending on the analysis, the software can generate a
test harness model, a report, and a data file. The following sections illustrate
each of these items and describe their contents.

Exploring Test Harness Models
(p. 8-2)

Describes a basic test harness model.

Understanding Simulink® Design
Verifier™ Reports (p. 8-8)

Describes the different parts of a
Simulink Design Verifier report.

Examining Simulink® Design
Verifier™ Data Files (p. 8-23)

Describes the contents of a Simulink
Design Verifier data file.

8 Reviewing the Results

Exploring Test Harness Models

In this section...

“About Test Harness Models” on page 8-2

“Anatomy of a Test Harness” on page 8-2

“Simulating the Test Harness” on page 8-6

About Test Harness Models
When you enable the Save test harness as model parameter (see “Results
Pane” on page 5-12), the Simulink® Design Verifier™ software generates a
test harness model after it completes its analysis. If the software’s Mode
parameter specifies Test generation, the harness model contains test cases
that achieve test objectives. Otherwise, the software’s Mode parameter
specifies Property proving and the harness model contains counterexamples
that falsify proof objectives.

Note The Simulink Design Verifier software can generate a harness model
only when the top level of the system you are analyzing contains an Inport
block.

Anatomy of a Test Harness
When the Simulink Design Verifier software completes its analysis, it
produces a test harness model that looks like this:

8-2

Exploring Test Harness Models

The harness model contains the following items:

• Test Case Explanation — This DocBlock documents the test cases or
counterexamples that the Simulink Design Verifier software generates.
Double-click the Test Case Explanation block to view a description of each
test case or counterexample. The block lists either the test objectives that
each test case achieves or the proof objectives that each counterexample
falsifies.

8-3

8 Reviewing the Results

• Inputs — This Signal Builder block contains signals that comprise the
test cases or counterexamples that the Simulink Design Verifier software
generated. Double-click the Inputs block to open the Signal Builder dialog
box and view its signals.

8-4

Exploring Test Harness Models

Each signal group represents a unique test case or counterexample. In the
Signal Builder dialog box, select a group’s tab to view the signals associated
with a particular test case or counterexample. See “Working with Signal
Groups” in Using Simulink® for more information about interacting with
the Signal Builder dialog box.

• Size-Type — This Subsystem block transmits signals from the Inputs
block to the Test Unit block. It ensures that the signals are of the
appropriate size and data type, which the Test Unit block expects.

• Test Unit — This Subsystem block contains a copy of the original model
that the Simulink Design Verifier software analyzed.

8-5

8 Reviewing the Results

Simulating the Test Harness
The test harness model enables you to simulate a copy of your original model
using the test cases or counterexamples that the Simulink Design Verifier
software generates. Using the test harness model, you can simulate

• A counterexample

• A single test case, for which the Simulink® Verification and Validation™
software collects and displays model coverage information

• All test cases, for which the Simulink Verification and Validation software
collects and displays cumulative model coverage information

Note By default, the Simulink Design Verifier software enables coverage
reporting for test harness models that contain test cases. Although it enables
coverage reporting with particular options selected, you can customize the
settings to meet your needs. For more information, see “Specifying Model
Coverage Reporting Options” in the Simulink Verification and Validation
User’s Guide.

To simulate a single test case or counterexample:

1 In the test harness model, double-click the Inputs block.

The Signal Builder dialog box appears.

2 In the Signal Builder dialog box, select the tab associated with a particular
test case or counterexample.

The Signal Builder dialog displays the signals that comprise the selected
test case or counterexample.

3 In the Signal Builder dialog box, click the Start simulation button .

The Simulink software simulates the test harness model using the signals
associated with the selected test case or counterexample. When simulating
a test case, the Simulink Verification and Validation software collects model
coverage information and displays a coverage report.

8-6

Exploring Test Harness Models

To simulate all test cases and measure their combined model coverage:

1 In the test harness model, double-click the Inputs block.

The Signal Builder dialog box appears.

2 In the Signal Builder dialog box, click the Run all button .

The Simulink software simulates the test harness model using all test
cases, while the Simulink Verification and Validation software collects
model coverage information and displays a coverage report.

See “Simulating with Signal Groups” in Using Simulink for more information
about simulating models containing Signal Builder blocks.

8-7

8 Reviewing the Results

Understanding Simulink® Design Verifier™ Reports

In this section...

“About Simulink® Design Verifier™ Reports” on page 8-8

“Front Matter” on page 8-8

“Summary Chapter” on page 8-9

“Block Replacements Summary Chapter” on page 8-14

“Test/Proof Objectives Chapter” on page 8-14

“Test Cases / Counterexamples Chapter” on page 8-19

“Approximations Chapter” on page 8-22

About Simulink® Design Verifier™ Reports
When you enable the Generate report of the results parameter (see
“Report Pane” on page 5-14), the Simulink® Design Verifier™ software
generates an HTML report after it completes its analysis. If the software’s
Mode parameter specifies Test generation, the report describes the model’s
test objectives and any corresponding test cases that result from the analysis.
Otherwise, the software’s Mode parameter specifies Property proving, and
the report describes the model’s proof objectives and any counterexamples
that result from the analysis.

Front Matter
The report begins with two sections: title and table of contents.

8-8

Understanding Simulink® Design Verifier™ Reports

The title section lists the following information:

• Model or subsystem name that the Simulink Design Verifier software
analyzed

• User name associated with the current MATLAB® session

• Date and time that the Simulink Design Verifier software generated the
report

The table of contents follows the title section. Clicking items in the table of
contents allows you to navigate quickly to particular chapters and sections.

Summary Chapter
The Summary chapter provides an overview of the Simulink Design Verifier
analysis. It contains the following sections:

8-9

8 Reviewing the Results

• “Input Model” on page 8-10

• “Analysis Information” on page 8-10

• “Output Files” on page 8-12

• “Options” on page 8-12

Input Model
The Input Model section provides information about the current version of
the model.

The Input Model section lists the following:

• Path and file name of the model that the Simulink Design Verifier software
analyzed

• Model version

• Date and time that the model was last saved

• Name of the person who last saved the model

See “Managing Model Versions” in Using Simulink® for details about
specifying this information for your models.

Analysis Information
The Analysis Information section summarizes the results of the Simulink
Design Verifier analysis. It looks like the following when the Simulink Design
Verifier software generates test cases for a model:

8-10

Understanding Simulink® Design Verifier™ Reports

The Analysis Information section lists the following information for all
analyses:

• Version of the Simulink Design Verifier software

• Total time the Simulink Design Verifier software spent to complete its
analysis

• Completion status of the Simulink Design Verifier analysis

• Total number of different approximation schemes the Simulink Design
Verifier software used in its analysis (see “Approximations Chapter” on
page 8-22)

• Total number of test or proof objectives for which the Simulink Design
Verifier software was unable to decide an outcome

• Total number of test or proof objectives that produced errors

If the Simulink Design Verifier software’s Mode parameter specifies Test
generation, the Analysis Information section also lists:

• Total number of test objectives that the software satisfied

• Total number of test objectives that the software satisfied without
generating test cases

• Total number of test objectives that the software determined to be
unsatisfiable

Otherwise, if the Simulink Design Verifier software’s Mode parameter
specifies Property proving, the Analysis Information section lists:

8-11

8 Reviewing the Results

• Total number of proof objectives that the software proved valid

• Total number of proof objectives that the software disproved, for which it
generated counterexamples that falsify each objective

• Total number of proof objectives that the software disproved without
generating counterexamples

See “Test/Proof Objectives Chapter” on page 8-14 for more information related
to the status of test and proof objectives.

Output Files
The Output Files section provides information about the artifacts that the
Simulink Design Verifier software produced after it analyzed a model.

The Output Files section lists the following:

• Path and file name of the test harness model (see “Exploring Test Harness
Models” on page 8-2)

• Path and file name of the Simulink Design Verifier data file (see
“Examining Simulink® Design Verifier™ Data Files” on page 8-23)

• Path and file name of the Simulink Design Verifier report

Options
The Options section provides information about the Simulink Design Verifier
analysis settings.

8-12

Understanding Simulink® Design Verifier™ Reports

The Options section lists the names of parameters that affected the Simulink
Design Verifier analysis, as well as the values those parameters specified. See
“sldvoptions Object Parameters” on page 9-8 for more information about the
parameters that this section displays.

8-13

8 Reviewing the Results

Block Replacements Summary Chapter
The Block Replacements Summary chapter provides an overview of the block
replacements that the Simulink Design Verifier software executed. It appears
only if the Simulink Design Verifier software replaced any blocks in a model.
The chapter displays a table that looks like the following:

Each row of the table corresponds to a particular block replacement rule that
the Simulink Design Verifier software applied to the model. The table lists
the following:

• Name of the M-file that represents the block replacement rule, and the
value of the BlockType parameter the rule specifies

• Description of the rule, which the MaskDescription parameter of the
replacement block specifies

• Name of the block(s) that the Simulink Design Verifier software replaced
in the model

See Chapter 3, “Working with Block Replacements” for more information.

Test/Proof Objectives Chapter
The Test/Proof Objectives chapter provides an overview of a model’s objectives.
It contains sections similar to the following:

• “Status” on page 8-15

• “Model Hierarchy” on page 8-18

8-14

Understanding Simulink® Design Verifier™ Reports

Status
The Status section summarizes all test or proof objectives in a model,
including an objective’s type, the model item to which it corresponds, and its
description. This section displays each objective in one of the following tables
associated with the objective’s status:

• Objectives Undecided — Lists the test or proof objectives for which the
Simulink Design Verifier software was unable to determine an outcome in
the allotted time. In this case, either the software exceeded its analysis
time limit (which the Maximum analysis time parameter specifies) or
you aborted the analysis before it completed processing these objectives.

• Objectives Producing Errors — Lists the test or proof objectives for
which the Simulink Design Verifier software encountered errors during
its analysis. In this case, analyzing these objectives involves nonlinear
arithmetic, which the software does not support.

If the Simulink Design Verifier software’s Mode parameter specifies Test
generation, the Status section also includes the following tables:

• Objectives Proven Unsatisfiable — Lists the test objectives that the
Simulink Design Verifier software determined to be unsatisfiable. In this
case, the software determined that there are no test cases that achieve
these objectives.

8-15

8 Reviewing the Results

• Objectives Satisfied — Lists test objectives that the Simulink Design
Verifier software satisfied. In this case, the software generated test cases
that achieve these objectives.

• Objectives Satisfied - No Test Case — Lists test objectives that the
Simulink Design Verifier software satisfied without generating test cases.
In this case, you might have specified a test objective on a signal whose
value the software cannot control; or the software might have encountered
a divide-by-zero error when instantiating a test case.

Otherwise, if the Simulink Design Verifier software’s Mode parameter
specifies Property proving, the Status section includes:

8-16

Understanding Simulink® Design Verifier™ Reports

• Objectives Proven Valid — Lists the proof objectives that the Simulink
Design Verifier software proved valid.

• Objectives Falsified with Counterexamples — Lists the proof
objectives that the Simulink Design Verifier software disproved. In this
case, the software generated counterexamples that falsify these objectives.

• Objectives Falsified - No Counterexample — Lists the proof objectives
that the Simulink Design Verifier software disproved without generating
counterexamples. In this case, you might have specified a proof objective
on a signal whose value the software cannot control; or the software
might have encountered a divide-by-zero error when instantiating a
counterexample.

8-17

8 Reviewing the Results

Note The Status section displays only the tables that contain one or more
objectives.

Model Hierarchy
Following the Status section is a series of sections that represent the model
hierarchy—from the root level to the model’s subsystems and Stateflow®

charts. Each section summarizes all the test or proof objectives that a
particular hierarchical level of the model contains.

For example, suppose a model named my_model contains Abs and Switch
blocks in its root level. If you use the Simulink Design Verifier software to
generate tests for this model, the report displays a section that lists only the
test objectives associated with the root-level model:

Further, suppose that the root level of this same model includes a subsystem
named my_subsystem, which contains a Test Objective block. In another
section, the report lists the test objective associated with this subsystem:

8-18

Understanding Simulink® Design Verifier™ Reports

Each section lists objectives that correspond to particular model items in a
model hierarchy. This includes the following information:

• Status of a test or proof objective

• Test case that achieves a test objective, or counterexample that falsifies
a proof objective

• Description of a test or proof objective

Test Cases / Counterexamples Chapter
The Test Cases / Counterexamples chapter provides an overview of the
test cases or counterexamples that the Simulink Design Verifier software
generated during its analysis. Depending on whether the software’s Mode
parameter specifies Test generation or Property proving, this chapter
includes sections associated with the following:

• “Test Cases” on page 8-19

• “Counterexamples” on page 8-21

Test Cases
If the Simulink Design Verifier software’s Mode parameter specifies Test
generation, the Test Cases chapter includes a series of sections that
summarize the test cases the software generated.

8-19

8 Reviewing the Results

Each section lists the following information about a test case:

• Length of the signals that comprise the test case

• Total number of test objectives that the test case achieves

• Time step and corresponding time at which the test case achieves particular
test objectives

• Values of the signals that comprise the test case

Note The Generated Input Data table can display a dash (-) instead of a
number as a signal value. In this case, the value of the signal at that time
step does not affect the test objective. In the test harness model, the Inputs
block represents these values with zeros unless you enable the Randomize
data that does not affect outcome parameter (see “Randomize data that
does not affect outcome” on page 5-14).

8-20

Understanding Simulink® Design Verifier™ Reports

Counterexamples
If the Simulink Design Verifier software’s Mode parameter specifies Property
proving, the Counterexamples chapter includes a series of sections that
summarize the counterexamples the software generated.

Each section lists the following information about a counterexample:

• Length of the signals that comprise the counterexample

• Total number of proof objectives that the counterexample falsifies

• Particular proof objectives that the counterexample falsifies

• Values of the signals that comprise the counterexample

Note The Generated Input Data table can display a dash (-) instead of a
number as a signal value. In this case, the value of the signal at that time
step does not affect the proof objective. In the test harness model, the Inputs
block represents these values with zeros unless you enable the Randomize
data that does not affect outcome parameter (see “Randomize data that
does not affect outcome” on page 5-14).

8-21

8 Reviewing the Results

Approximations Chapter
The Approximations chapter provides an overview of the approximations that
the Simulink Design Verifier software uses. It displays a table that appears
like this:

Each row of the table describes a specific type of approximation that the
Simulink Design Verifier software used during its analysis of the model.

Note Review the analysis results carefully when the Simulink Design
Verifier software uses approximations. In rare cases, an approximation can
result in test cases that fail to achieve test objectives or counterexamples that
fail to falsify proof objectives. For example, suppose the software generates
a test case signal that should achieve an objective by exceeding a threshold;
however, a floating-point-roundoff error might prevent that signal from
attaining the threshold value.

8-22

Examining Simulink® Design Verifier™ Data Files

Examining Simulink® Design Verifier™ Data Files

In this section...

“About Simulink® Design Verifier™ Data Files” on page 8-23

“Anatomy of the sldvData Structure” on page 8-23

“Simulating Models with Simulink® Design Verifier™ Data Files” on page
8-28

About Simulink® Design Verifier™ Data Files
When you enable the Save test data to file parameter (see “Results Pane”
on page 5-12), the Simulink® Design Verifier™ software generates a data
file after it completes its analysis. The data file is a MAT-file that contains
a structure named sldvData. This structure stores all the data that the
software gathers and produces during its analysis of a model. Although the
software displays the same data graphically in the test harness model and
report, you might like to use the data file to conduct your own analysis or
generate a custom report.

Anatomy of the sldvData Structure
When the Simulink Design Verifier software completes its analysis, it
produces a MAT-file that contains a structure named sldvData. To explore
the contents of the sldvData structure:

1 Generate test cases for the sldvdemo_flipflop model (see “Running a
Demo Model” on page 1-6).

The Simulink Design Verifier software produces a data
file named sldvdemo_flipflop_sldvdata.mat in the
sldv_output\sldvdemo_flipflop directory.

2 At the MATLAB® prompt, enter the following command:

load('sldv_output\sldvdemo_flipflop\sldvdemo_flipflop_sldvdata.mat')

The MATLAB software loads the sldvData structure into its workspace.
This structure contains the Simulink Design Verifier analysis results of the
sldvdemo_flipflop model.

8-23

8 Reviewing the Results

3 At the MATLAB prompt, enter sldvData.

The MATLAB Command Window displays the following field names that
constitute the structure:

sldvData =

AnalysisInformation: [1x1 struct]
ModelObjects: [1x2 struct]

Objectives: [1x12 struct]
TestCases: [1x4 struct]

See “Structures” in the MATLAB documentation for more information
about working with structures.

The following sections describe the contents of each primary field in the
sldvData structure:

• “AnalysisInformation Field” on page 8-24

• “ModelObjects Field” on page 8-25

• “Objectives Field” on page 8-26

• “TestCases Field” on page 8-26

AnalysisInformation Field
In the sldvData structure, the AnalysisInformation field lists settings of
particular analysis options and related information. The following table
describes each subfield of the AnalysisInformation field.

Subfield Name Description

Mode String specifying the value of the Mode parameter
associated with the model’s sldvoptions object (see
“sldvoptions Object Parameters” on page 9-8).

SampleTimes For internal use only.

InputPortInfo Cell array of structures specifying information about
each Inport block in the top-level system.

8-24

Examining Simulink® Design Verifier™ Data Files

Subfield Name Description

ProvingStrategy String specifying the value of the ProvingStrategy
parameter associated with the model’s sldvoptions
object (see “sldvoptions Object Parameters” on page
9-8).

Status String specifying the completion status of the
Simulink Design Verifier analysis.

MaxViolation-
Steps

String specifying the value of the MaxViolationSteps
parameter associated with the model’s sldvoptions
object (see “sldvoptions Object Parameters” on page
9-8).

MaxProcessTime String specifying the value of the MaxProcessTime
parameter associated with the model’s sldvoptions
object (see “sldvoptions Object Parameters” on page
9-8).

ModelObjects Field
In the sldvData structure, the ModelObjects field lists the model items and
their associated objectives. The following table describes each subfield of the
ModelObjects field.

Subfield Name Description

descr String specifying the full path to a model object,
including objects in a Stateflow® chart.

slPath String specifying the full path to a Simulink® model
object.

sfObjType String specifying the type of a Stateflow object, e.g., S
for state and T for transition.

sfObjNum Integer representing the unique identifier of a
Stateflow object.

objectives Vector of integers representing the indices of objectives
associated with a model object.

handle Real number specifying the handle of a model object.

8-25

8 Reviewing the Results

Objectives Field
In the sldvData structure, the Objectives field lists information about
each objective, such as its type, status, and description. The following table
describes each subfield of the Objectives field.

Subfield Name Description

type String specifying the type of an objective.

status String specifying the status of an objective.

descr String specifying the description of an objective.

label String specifying the label of an objective.

outcomeValue Integer specifying an objective’s outcome.

coveragePointIdx Integer representing the index of a coverage point
with which an objective is associated.

modelObjectIdx Integer representing the index of a model object with
which an objective is associated.

testCaseIdx Integer representing the index of a test case or
counterexample that addresses an objective.

TestCases Field
In the sldvData structure, the TestCases field lists information about each
test case or counterexample, such as its signal values and either the test
objectives that it achieves or the proof objectives that it falsifies. The following
table describes each subfield of the TestCases field.

Subfield Name Description

timeValues Vector specifying the time values associated with
signals in a test case or counterexample.

dataValues Cell array specifying the data values associated with
signals in a test case or counterexample.

8-26

Examining Simulink® Design Verifier™ Data Files

Subfield Name Description

paramValues Structure specifying the parameter values associated
with a test case or counterexample. Its fields include:

name — String specifying the name of a parameter.

value — Number specifying the value of a parameter.

noEffect — Logical value specifying whether a
parameter’s value affects an objective.

stepValues Vector specifying the number of time steps that
comprise signals in a test case or counterexample.

objectives Structure specifying objectives that a test case or a
counterexample addresses. Its fields include:

objectiveIdx — Integer representing the index of an
objective that a test case achieves or a counterexample
falsifies.

atTime — Time value at which either a test case
achieves an objective or a counterexample falsifies an
objective.

atStep — Time step at which either a test case
achieves an objective or a counterexample falsifies an
objective.

dataNoEffect Cell array of logical vectors specifying whether a
signal’s data values affect an objective. The vector
uses 1 to indicate that a signal’s data value does not
affect an objective; otherwise, it uses 0.

signalLabels Cell array of strings specifying the labels of signals in
a test case or counterexample.

8-27

8 Reviewing the Results

Subfield Name Description

portdimensions Cell array of vectors specifying the dimensions of
signals in a test case or counterexample.

expectedOutput Cell array of vectors specifying the output values
that result from simulating the model using the test
case signals. Each cell represents the output values
associated with a different Outport block in the
top-level system. See “Include expected output values”
on page 5-14 for more information.

Simulating Models with Simulink® Design Verifier™
Data Files
The sldvruntest function enables you to simulate a model using test cases
or counterexamples that reside in a Simulink Design Verifier data file. For
example, suppose the following command specifies the location of the data
file that the Simulink Design Verifier software produced after analyzing the
sldvdemo_flipflop model (see “Running a Demo Model” on page 1-6).:

sldvDataFile = 'sldv_output\sldvdemo_flipflop\sldvdemo_flipflop_sldvdata.mat'

Use the sldvruntest function to simulate the sldvdemo_flipflop model
using test case 2 in the data file:

output = sldvruntest('sldvdemo_flipflop', sldvDataFile, 2)

See sldvruntest in Chapter 9, “Function Reference” for more information.

8-28

A

Analyzing Large Models
and Improving Performance

This chapter describes some practical strategies for analyzing larger models
with the Simulink® Design Verifier™ software and troubleshooting errors and
warnings. These strategies will help you to get the most benefit from the
Simulink Design Verifier software.

In general, you will see improved performance by breaking your model into
smaller components and running Simulink Design Verifier analyses on them.
The strategies in this chapter compliment a divide-and-conquer approach so
you can run a Simulink Design Verifier analysis on larger portions of your
system.

• “How the Simulink® Design Verifier™ Software Works” on page A-2

• “Sources of Model Complexity” on page A-5

• “Handling Models with Large Numbers of Inputs” on page A-6

• “Reducing Complexity from Floating-Point Operations and Nonlinear
Arithmetic” on page A-7

• “Partitioning Inputs and Generating Tests Incrementally” on page A-9

• “Handling Models with Large State Spaces” on page A-11

• “Handling Problems with Counters and Timers” on page A-12

• “Strategies for Proving Properties of Large Models” on page A-13

A Analyzing Large Models and Improving Performance

How the Simulink® Design Verifier™ Software Works
The Simulink® Design Verifier™ software is a very efficient search tool that
explores the simulation behavior of a model. It searches the possible values
of model inputs to find a simulation that satisfies an objective. The exact
definition of these search objectives comes from the Simulink Design Verifier
configuration options and your model’s structure.

The search always begins with the initial configuration of the model (at t=0)
and can span an arbitrary number of time steps. Generally, there are an
infinite number of search paths because the values of inputs are independent
from one time step to the next, and there is no fixed limit to the number of
time steps. If there were no way to reduce the search space, the Simulink
Design Verifier software would never be able to stop its analysis.

The search is fundamentally limited by tracking the persistent information
in the model such as discrete states, data-store memories, and persistent
variables. Once a search has explored all possible inputs from all possible
configurations, the results are equivalent to having performed a complete
search of every possible infinite sequence of inputs.

Consider a simple Simulink® model with two Logical Operator blocks and
a Memory block:

The persistent information in this model is limited to the Boolean value of the
Memory block. The input to the model is a single Boolean value. Therefore the
complete behavior of the model, including the behavior that would result from
an arbitrarily long sequence of inputs, is described by the following table:

A-2

How the Simulink® Design Verifier™ Software Works

Input Memory
Value

Output Next Memory
Value

1 false false false false

2 true false false true

3 false true false true

4 true true true false

If you run the Simulink Design Verifier software to find a test case with a true
output, it looks through this table to see if such a scenario is possible.

Once the Simulink Design Verifier software discovers a configuration that
satisfies an objective, it needs to find a path to reach this configuration from
the initial conditions. If the initial memory value is true, the test case would
only need to be a single time step where the input was true. If the initial value
of the memory is false, the test case would need to force the memory to be true
and the test case would be a sequence of row 2 followed by row 4.

There are an infinite number of test cases that will cause the output to be
true, and regardless of the state value, the output can be held false for an
arbitrary time before making it true. When the Simulink Design Verifier
software searches, it returns the first case it encounters that satisfies the
objective. This will invariably be the simulation with the fewest time steps.
Sometimes this result is undesirable because it is unrealistic or does not
satisfy some other test requirement.

The same basic principles from this example apply to property proving
and test generation. During test generation the search criteria is explicitly
specified from the options. During property proving the objective is the
opposite of the proof to be satisfied. If that objective is satisfied the path is
returned as a counterexample of the proof. If the search is completed without
finding a satisfying path the proof completes successfully.

In larger more complicated models, the Simulink Design Verifier software
uses mathematical techniques to simplify the search problem. It can identify
portions of the model that do not affect the objectives of interest. It can
discover relationships within the model that reduce the complexity of the
search, and it can reuse the intermediate results from one objective to another.

A-3

A Analyzing Large Models and Improving Performance

Ultimately the problem is reduced to a search though the logical values that
describe your model.

The Simulink Design Verifier software is particularly efficient at simplifying
linear arithmetic of floating-point numbers by approximating them with
rational numbers. The Simulink Design Verifier software discovers how
the logical relationships between these variables affect the proof and test
objectives. This enables the Simulink Design Verifier software to support
supervisory logic that is commonly found in embedded controls designs.

A-4

Sources of Model Complexity

Sources of Model Complexity
A model can complicate the search process in the following ways:

• Size of inputs

• Number of possible configurations

• Ability to reach one configuration from another

You need to understand these sources of complexity and the strategies to
reduce their impact to get the best performance from the Simulink® Design
Verifier™ software.

A-5

A Analyzing Large Models and Improving Performance

Handling Models with Large Numbers of Inputs
Input complexity comes from the number of inputs, the type of the inputs, and
the way the inputs affect the model state and the objectives of the analysis.
Because the search is performed on a logical simplification of your model, the
Simulink® Design Verifier™ software is more efficient at handling logical
inputs than integer or floating-point inputs.

Floating-point inputs can be efficiently handled when their values impact the
design through linear inequalities such as x < y or a > 0. Nonlinear arithmetic
of floating-point numbers is not supported by the Simulink Design Verifier
software, as occurs with multiplication or division unless one of the multiply
operands or the divisor is a constant.

Input complexity can also result from certain cast operations. For example,
casting a double to an int8 can introduce a nonlinearity in certain situations.

You can reduce input complexity by separating the logical and arithmetic
portions of a design and restricting a Simulink Design Verifier analysis to
the logical portion.

A-6

Reducing Complexity from Floating-Point Operations and Nonlinear Arithmetic

Reducing Complexity from Floating-Point Operations and
Nonlinear Arithmetic

Another very effective strategy is to restrict the floating-point inputs to a set
of representative values or, ideally, a single constant value. This process,
called discretization, treats the free floating-point input as though it were
an enumeration. Discretization is the simplest way to handle nonlinear
arithmetic from multiplication and division.

Consider the following model with a Product block feeding a Saturation block:

The Simulink® Design Verifier™ software generates errors when attempting
to satisfy the upper and lower limits of the Saturation block. You can work
around these errors by restricting one of the inputs to be a range of values.
For example, if you restrict the second input (y) to be either 1, 2, 5, or 10, the
Simulink Design Verifier software will produce test cases for all inputs:

You can also constrain signals that are intermediate or output values of the
model. Sometimes this makes it easier to work around multiplication or
divisions that are contained inside lower-level subsystems and do not depend

A-7

A Analyzing Large Models and Improving Performance

on input values. In these situations you must be careful to avoid creating
constraints that contradict the model. This occurs when a constraint can
never be satisfied because it contradicts some aspect of the model or some
other constraint. Here is a simple example of a contradictory model:

When you work with very large models that have many multiplication
and division operations, it is often easier to add constraints to all of the
floating-point inputs rather than to identify the precise set of inputs that
require constraints.

As you create large models you should identify sets of values for each Input
port that are required to satisfy your testing needs. For example, if you have
an input for model speed, and within your design there are paths of execution
that are conditioned on speed being above or below thresholds of 80, 150, 600
and 8000 RPM, you might choose to restrict speed values to be either 50, 100,
200, 1000, 5000 or 10000 RPM so that every threshold can be either active
or inactive.

A-8

Partitioning Inputs and Generating Tests Incrementally

Partitioning Inputs and Generating Tests Incrementally
Like other Simulink® parameters, constraint values can be shared across
several blocks by referencing a common workspace variable and they can be
initialized from M-files. If you have several inputs related to speed, such
as desired speed, measured speed, and average speed, you might choose to
constrain all of them to the same set of values.

You can use parameterized constraints and successive runs of the Simulink®

Design Verifier™ software to implement an incremental test generation
strategy:

1 Partition inputs so that some are held constant, some are restricted to
sets of constants, and some are free.

2 Generate test cases and run those test cases to collect model coverage.

3 Choose new values and new partitions of inputs.

4 Generate tests for missing coverage using sldvgencov and the current
test coverage.

5 Repeat steps 3 and 4 until sufficient coverage is generated.

You should choose partitions of inputs that enable further simplification when
a Simulink Design Verifier analysis runs. Consider the following model,
which has three mutually independent enabled subsystems:

A-9

A Analyzing Large Models and Improving Performance

You can incrementally generate test cases for each of these subsystems by
constraining the first input to the appropriate constant value before running
a Simulink Design Verifier analysis. In this way, as tests are created for each
of the subsystems, the complexity of the other two is ignored.

A-10

Handling Models with Large State Spaces

Handling Models with Large State Spaces
Persistent design variables impact the complexity of analysis in much the
same way as input complexity. As such, many of the same strategies can be
used to simplify the complexity of the state space that must be searched.
States that are delayed values of inputs can be simplified by applying
constraints to the input signal that is delayed. States that are contained
within conditionally executed subsystems can be simplified by constraining
the input so the system does not execute.

States that are computed from previous state values present a special
challenge. For example, the integrator value in a PID controller can be
restricted only to a set of values if that set includes all reachable values from
the initial value or the input is forced to be 0. Both of these limitations are
usually not practical and would probably make test generation less complete.

An alternative strategy is to leverage any existing simulation data to help
satisfy your testing needs. If you have existing test data, you can run this
on your model and collect model coverage. Using the sldvgencov function,
you can ignore model coverage objectives that have already been satisfied in
simulation when you supply a coverage data object.

A-11

A Analyzing Large Models and Improving Performance

Handling Problems with Counters and Timers
Complexity from states occurs from both the size of the state representation
and the number of time steps that are required to transition from one state
to another. The Simulink® Design Verifier™ software searches through
sequences of time steps, starting from the default configuration, to find input
values that reach a state that satisfies an objective. The search process
proceeds in a breadth-first manner. All configurations that can be reached in
a single time step are investigated before any of the configurations that can
be reached in two time steps. Likewise, all configurations that can be reached
in two time steps are investigated before any configuration that requires
three or more time steps, etc.

Models that contain time delays, such as countdown timers, hinder a Simulink
Design Verifier analysis by forcing the search to span large numbers of time
steps. By design, the value of a counter can reach n only when its previous
value is n-1.

Similar effects can also occur when systems use extensive averaging and
filtering to delay the response to a change in inputs. Any aspect of the design
that delays the response will cause the test sequences to contain more time
steps and longer test cases that are more difficult to identify.

There are some basic strategies you can use to improve performance in models
that have delays:

1 Make time delays calibratible parameters and choose very small values
when running a Simulink Design Verifier analysis. It is likely that a
system with a logical error when a time delay is set to 2000 steps will still
demonstrate that error if the time delay is changed to 2 steps. If your
system has several delays, you might want to choose small but unique
values for each of them so that your delays will be progressively satisfied.

2 Choose higher frequency cutoffs for filters and fewer samples to average so
that filtering delays are minimized.

A-12

Strategies for Proving Properties of Large Models

Strategies for Proving Properties of Large Models
Property proving uses the same underlying techniques as test generation and
suffers from the same performance limitations; but unlike test generation,
it is often impossible to simplify the problem without compromising the
validity of the results. Simple proof objectives that are not affected by model
dynamics can often be proven quickly. Otherwise, a successful proof requires
that the Simulink® Design Verifier™ software searches through all reachable
configurations of your model—even the ones that are reached only after long
time delays. The computation time and memory required to search a model
completely often make an exhaustive proof impractical.

Alternatively, you can use the bounded model checking capability in the
Simulink Design Verifier software to examine properties in larger, more
complicated models. Using bounded model checking, you restrict the search
for property violations to a predefined limit of time steps. If a violation is not
detected, you can be confident that it is impossible to violate the property
with any input sequence having fewer time steps than the specified limit;
however, you will not prove that the property is true because there might be a
counterexample having more time steps than the specified limit.

To configure the Simulink Design Verifier software for bounded model
checking, on the Design Verifier > Property Proving pane of the
Configuration Parameters dialog box, specify the value of the Strategy
parameter as Find violation. When you use this strategy, the Maximum
violation steps parameter becomes active so that you can specify an upper
bound for the number of time steps in the search. See “Property Proving
Pane” on page 5-11 for more information.

An effective strategy for proving properties combines proving and searching
for violations to get the most benefit from the Simulink Design Verifier
software that is practical for the properties and models under investigation:

1 Start with the Proving strategy and use a relatively short processing time
limit, such as 5-10 minutes. If there are trivial counterexamples or if your
properties do not depend on model dynamics, the Simulink Design Verifier
analysis should complete in that amount of time.

2 Switch to the Find violation strategy and choose a small bound on the
number of violation steps, such as 4-6. If your properties have simple

A-13

A Analyzing Large Models and Improving Performance

counterexamples, the Simulink Design Verifier software should discover
them.

3 If you do not find any violations with a small bound, increase the bound and
look for longer counterexamples. You probably will want to increase the
bound in several increments and observe the processing time and memory
consumption. System resources might limit the length of violation that can
be searched. You should also consider the dynamics of your model and the
number of time steps that are needed to transition between an arbitrary
pair of configurations. If you choose too large of a bound, the violation
search can be more complex than the unbounded proof.

4 If you are able to run violation searches with relatively large bounds, e.g.,
30-50 time steps, you can switch back to the Proving strategy and use a
longer time limit, such as several hours.

A-14

9

Function Reference

sldvblockreplacement

Purpose Replace model blocks to support Simulink® Design Verifier™ analysis

Syntax [status, newmodel] = sldvblockreplacement(model)
[status, newmodel] = sldvblockreplacement(model, options)

Description [status, newmodel] = sldvblockreplacement(model) copies model
and replaces specified model blocks and other model components to
prepare the model for a Simulink Design Verifier analysis. This function
replaces the blocks of the model according to the block replacement
rules specified in the configuration settings associated with model.
This function returns a handle to the new model in newmodel. The
sldvblockreplacement function returns 1 upon successful completion
and 0 otherwise.

[status, newmodel] = sldvblockreplacement(model, options)
copies model and replaces specified model blocks and other model
components to prepare the model for a Simulink Design Verifier
analysis. This function replaces the blocks of the model according to
the block replacement rules using the sldvoptions object specified by
options. This function returns a handle to the new model in newmodel.

See Also sldvoptions

9-2

sldvcompat

Purpose Check model for compatibility with Simulink® Design Verifier™
analysis

Syntax status = sldvcompat(model)
status = sldvcompat(block)
status = sldvcompat(model, options)

Description status = sldvcompat(model) returns 1 if model is compatible with
the Simulink Design Verifier software and 0 otherwise. When checking
for compatibility, the Simulink Design Verifier software replaces model
blocks if this option has been enabled.

Note If you call this function without specifying a model, the function
operates on the current system.

status = sldvcompat(block) converts the Simulink® block into a
temporary model, then checks the compatibility of that model with the
Simulink Design Verifier software. The function destroys the temporary
model after the compatibility check.

status = sldvcompat(model, options) checks the subsystem
specified by model for compatibility with the Simulink Design Verifier
software using the sldvoptions object specified by options.

Examples The following commands open the vdp demo model and check for its
compatibility with the Simulink Design Verifier software:

vdp
status = sldvcompat('vdp')

9-3

sldvcompat

The Simulink Design Verifier software displays the result as follows:

Checking compatibility of model "vdp"

Model "vdp" is not compatible with Simulink Design Verifier

status =

0

The following commands open sldvdemo_flipflop and check for its
compatibility with the Simulink Design Verifier software:

sldvdemo_flipflop
status = sldvcompat('sldvdemo_flipflop')

The Simulink Design Verifier software displays the results as follows:

Checking compatibility of model "sldvdemo_flipflop"

Compiling model...done
Checking compatibility...done

Model "sldvdemo_flipflop" is compatible with
Simulink Design Verifier.

ans =

1

See Also sldvoptions, sldvrun

9-4

sldvextract

Purpose Extract subsystem contents into new model for Simulink® Design
Verifier™ analysis

Syntax [status, modelH] = sldvextract(blockH)

Description [status, modelH] = sldvextract(blockH) extracts the contents of the
subsystem that blockH specifies, with which it creates a new model
that you can analyze using the Simulink Design Verifier software. The
sldvextract function returns the handle of the new model in modelH.
It returns status as 1 upon successful completion and 0 otherwise.

9-5

sldvgencov

Purpose Run Simulink® Design Verifier™ analysis to obtain missing model
coverage

Syntax [status, cvdo] = sldvgencov(model, options, startcov)

Description [status, cvdo] = sldvgencov(model, options, startcov) runs
a Simulink Design Verifier analysis on the specified model using the
sldvoptions object specified by options. The analysis ignores all
model coverage objects that are satisfied in the cvdata object specified
by startcov. The sldvgencov function returns 1 for status if the
Simulink Design Verifier software was successful or 0 otherwise. It
also measures the coverage in the new tests and returns the resulting
cvdata object cvdo.

See Also sldvoptions, sldvrun

9-6

sldvharnessmerge

Purpose Merge test cases and initializations into one model

Syntax status = sldvharnessmerge(name, models,
initialization_commands)

Description status = sldvharnessmerge(name, models, initialization_commands)
collects the test data and initialization commands from each test
harness model listed in models and saves them in name. This function
assumes that you have created each test harness model with the
Simulink® Design Verifier™ software, either with the sldvrun function
or the Design Verifier > Generate Tests menu item.

If name does not exist, this function creates it as a copy of the first model
in models. This function then copies the data from the other models
into this model. If name was created from a previous sldvharnessmerge
run, subsequent runs of this function for name will maintain the correct
structure and initialization from that earlier run. If name matches an
existing Simulink® model, this function merges the test data from
models into name.

• models can be a cell array of model names or an array of model
handles.

• initialization_commands must be a cell array of strings the same
length as models. initialization_commands define parameter
settings for the test cases of each test harness model. Each time a
model test case executes, the associated initialization command is
evaluated in the base workspace.

Consider using sldvharnessmerge with sldvgencov to combine test
cases that use different sets of parameter values.

See Also sldvgencov

9-7

sldvoptions

Purpose Access Simulink® Design Verifier™ options object

Syntax options = sldvoptions
options = sldvoptions(model)

Description options = sldvoptions returns a Simulink Design Verifier options
object that contains default values for its parameters (see “sldvoptions
Object Parameters” on page 9-8).

options = sldvoptions(model) returns the Simulink Design Verifier
options object attached to model.

sldvoptions
Object
Parameters

The following table lists and describes parameters that comprise a
Simulink Design Verifier options object.

Parameter Description Values

Assertions Set by the Assertion
blocks option on the
Design Verifier >
Property Proving pane
of the Configuration
Parameters dialog box.

'EnableAll' | 'DisableAll' |
{'UseLocalSettings'}

BlockReplacement Set by the Apply block
replacements option on
the Design Verifier >
Block Replacements
pane of the Configuration
Parameters dialog box.

'on' | {'off'}

9-8

sldvoptions

Parameter Description Values

BlockReplacementModel-
FileName

Set by the File path
of the output model
option on the Design
Verifier > Block
Replacements pane
of the Configuration
Parameters dialog box.

string
{'$ModelName$_replacement'}

BlockReplacementRules-
List

Set by the List of block
replacement rules
option on the Design
Verifier > Block
Replacements pane
of the Configuration
Parameters dialog box.

string
{'<FactoryDefaultRules>'}

DataFileName Set by the Data file
name option on the
Design Verifier
> Results pane of
the Configuration
Parameters dialog box.

string
{'$ModelName$_sldvdata'}

DisplayReport Set by the Display
report option on
the Design Verifier
> Report pane of
the Configuration
Parameters dialog box.

{'on'} | 'off'

DisplayUnsatisfiable-
Objectives

Set by the Display
unsatisfiable test
objectives option on
the Design Verifier
pane of the Configuration
Parameters dialog box.

{'on'} | 'off'

9-9

sldvoptions

Parameter Description Values

HarnessModelFileName Set by the Harness
model file name
option on the Design
Verifier > Results pane
of the Configuration
Parameters dialog box.

string
{'$ModelName$_harness'}

MakeOutputFilesUnique Set by the Make
output file names
unique by adding a
suffix check box on the
Design Verifier pane
of the Configuration
Parameters dialog box.

{'on'} | 'off'

MaxProcessTime Set by the Maximum
analysis time option
on the Design Verifier
pane of the Configuration
Parameters dialog box.

double {'600'}

MaxTestCaseSteps Set by the Maximum
test case steps option
on the Design Verifier
> Test Generation pane
of the Configuration
Parameters dialog box.

int32 {'500'}

MaxViolationSteps Set by the Maximum
violation steps option
on the Design Verifier
> Property Proving
pane of the Configuration
Parameters dialog box.

int32 {'20'}

9-10

sldvoptions

Parameter Description Values

Mode Set by the Mode option
on the Design Verifier
pane of the Configuration
Parameters dialog box.

{'TestGeneration'} |
'PropertyProving'

ModelCoverageObjectives Set by the Model
coverage objectives
option on the Design
Verifier > Test
Generation pane
of the Configuration
Parameters dialog box.

'None' | 'Decision' |
'ConditionDecision' |
{'MCDC'}

OutputDir Set by the Output
directory option on the
Design Verifier pane
of the Configuration
Parameters dialog box.

string
{'sldv_output/$ModelName$'}

Parameters Set by the Apply
parameters option
on the Design Verifier
> Parameters pane
of the Configuration
Parameters dialog box.

{'on'} | 'off'

ParametersConfigFile-
Name

Set by the Parameter
configuration file
option on the Design
Verifier > Parameters
pane of the Configuration
Parameters dialog box.

string
{'sldv_params_template.m'}

9-11

sldvoptions

Parameter Description Values

ProofAssumptions Set by the Proof
assumptions option
on the Design Verifier
> Property Proving
pane of the Configuration
Parameters dialog box.

'EnableAll' | 'DisableAll' |
{'UseLocalSettings'}

ProvingStrategy Set by the Strategy
option on the Design
Verifier > Property
Proving pane of
the Configuration
Parameters dialog box.

'FindViolation'
| {'Prove'} |
'ProveWithViolationDetection'

RandomizeNoEffectData Set by the Randomize
data that does not
affect outcome option
on the Design Verifier
> Results pane of
the Configuration
Parameters dialog box.

'on' | {'off'}

ReportFileName Set by the Report
file name option on
the Design Verifier
> Report pane of
the Configuration
Parameters dialog box.

string {'$ModelName$_report'}

ReportIncludeGraphics Set by the Include
screen shots and plots
option on the Design
Verifier > Report pane
of the Configuration
Parameters dialog box.

'on' | {'off'}

9-12

sldvoptions

Parameter Description Values

SaveDataFile Set by the Save test
data to file option on
the Design Verifier
> Results pane of
the Configuration
Parameters dialog box.

{'on'} | 'off'

SaveExpectedOutput Set by the Include
expected output
values option on
the Design Verifier
> Results pane of
the Configuration
Parameters dialog box.

'on' | {'off'}

SaveHarnessModel Set by the Save test
harness as model
option on the Design
Verifier > Results pane
of the Configuration
Parameters dialog box.

{'on'} | 'off'

SaveReport Set by the Generate
report of the results
option on the Design
Verifier > Report pane
of the Configuration
Parameters dialog box.

{'on'} | 'off'

TestConditions Set by the Test
conditions option on
the Design Verifier >
Test Generation pane
of the Configuration
Parameters dialog box.

'EnableAll' | 'DisableAll' |
{'UseLocalSettings'}

9-13

sldvoptions

Parameter Description Values

TestObjectives Set by the Test
objectives option on
the Design Verifier >
Test Generation pane
of the Configuration
Parameters dialog box.

'EnableAll' | 'DisableAll' |
{'UseLocalSettings'}

TestSuiteOptimization Set by the Test suite
optimization option on
the Design Verifier >
Test Generation pane
of the Configuration
Parameters dialog box.

{'CombinedObjectives'} |
'IndividualObjectives' |
'LargeModel'

See Also sldvblockreplacement, sldvcompat, sldvgencov, sldvrun

9-14

sldvrun

Purpose Run Simulink® Design Verifier™ analysis on model or system

Syntax status = sldvrun(model)
status = sldvrun(block)
status = sldvrun(model, options)
[status, filenames] = sldvrun(model, options)

Description status = sldvrun(model) runs a Simulink Design Verifier analysis
on the specified model. The Simulink Design Verifier software uses the
configuration settings associated with model (if available); otherwise,
the software uses its default configuration settings. Upon completion,
sldvrun returns one of the following values for status:

• -1 — Maximum processing time was exceeded.

• 0 — An error occurred.

• 1 — Preprocessing completed normally.

Note If you call this function without specifying a model, the function
operates on the current system.

status = sldvrun(block) converts the Simulink® block into a new
model, then runs a Simulink Design Verifier analysis on the new model.
The Simulink Design Verifier software uses the configuration settings
associated with the parent model of block (if available); otherwise, the
software uses its default configuration settings.

status = sldvrun(model, options) runs a Simulink Design Verifier
analysis on the model specified by model. The Simulink Design Verifier
software uses the sldvoptions object specified by options.

[status, filenames] = sldvrun(model, options) runs a Simulink
Design Verifier analysis on the model specified by model. This function
returns status and filenames, a structure whose fields list the names
of the files that the Simulink Design Verifier software generates:

9-15

sldvrun

• HarnessModel — Simulink harness model.

• DataFile — MAT-file that contains raw input data.

• Report — HTML report that documents the results.

• ExtractedModel — Simulink model extracted from subsystem.

• BlockReplacementModel — Simulink model obtained from block
replacements.

See Also sldvcompat, sldvgencov, sldvoptions

9-16

sldvruntest

Purpose Simulate model using test case in Simulink® Design Verifier™ data file

Syntax data = sldvruntest(model, sldvDataFile, testIdx)
data = sldvruntest(model, sldvDataFile)
[data, cvdo] = sldvruntest(model, sldvDataFile, testIdx,

true)
[data, cvdo] = sldvruntest(model, sldvDataFile, [], true)

Description data = sldvruntest(model, sldvDataFile, testIdx) simulates
model using input signals associated with a single test case that the
Simulink Design Verifier software generated. testIdx specifies the
index of the test case that the MAT-file, sldvDataFile, contains. This
function returns data, a structure whose fields list the simulation
results:

• T — Contains the simulation time vector.

• X — Contains the simulation state matrix.

• Y — Contains the simulation output matrix.

data = sldvruntest(model, sldvDataFile) simulates model using
all test cases that the MAT-file, sldvDataFile, contains.

[data, cvdo] = sldvruntest(model, sldvDataFile, testIdx,
true) simulates model using the test case that testIdx indexes in the
MAT-file sldvDataFile. The Simulink® Verification and Validation™
software collects model coverage information during the simulation,
which the function returns in the cvdata object cvdo.

[data, cvdo] = sldvruntest(model, sldvDataFile, [], true)
simulates model using all test cases that the MAT-file, sldvDataFile,
contains. The Simulink Verification and Validation software collects
model coverage information during the simulation, which the function
returns in the cvdata object cvdo.

See Also cvsim (in the Simulink Verification and Validation User’s Guide), sim
(in the Simulink® Reference)

9-17

sldvruntest

9-18

10

Block Reference

Proof Assumption

Purpose Constrain signal values when proving model properties

Library Simulink Design Verifier

Description When operating in property proving mode, the Simulink® Design
Verifier™ software proves that properties of your model satisfy specified
criteria (see Chapter 7, “Proving Properties of a Model”). In this mode,
you can use Proof Assumption blocks to define assumptions for signals
in your model. The Values parameter lets you specify constraints on
signal values during a property proof. Use the Initial parameter to
specify whether the constraint applies throughout the entire proof or
only at its beginning. The block applies the specified Values parameter
to its input signal, and the Simulink Design Verifier software proves or
disproves that the properties of your model satisfy specified criteria.

The block’s parameter dialog box also allows you to

• Enable or disable the assumption.

• Specify that the block should display its Values parameter in the
model editor.

• Specify that the block should display its output port.

Note The Simulink® and Real-Time Workshop® software ignore the
Proof Assumption block during model simulation and code generation,
respectively. The Simulink Design Verifier software uses the Proof
Assumption block only when proving model properties.

Specifying Proof Assumptions

Use the Values parameter to constrain signal values in property proofs.
Specify any combination of scalars and intervals in the form of a
MATLAB® cell array (see “Cell Arrays” in the MATLAB documentation
for information about working with cell arrays).

10-2

Proof Assumption

Tip If the Values parameter specifies only one scalar value, you do not
need to enter it in the form of a MATLAB cell array.

Scalar values each comprise a single cell in the array, for example:

{0, 5}

A closed interval comprises a two-element vector as a cell in the array,
where each element specifies an interval endpoint:

{[1, 2]}

Alternatively, you can specify scalar values using the Sldv.Point
constructor, which accepts a single value as its argument. You can
specify intervals using the Sldv.Interval constructor, which requires
two input arguments, i.e., a lower bound and an upper bound for the
interval. Optionally, you can provide one of the following strings as a
third input argument that specifies inclusion or exclusion of the interval
endpoints:

• '()' — Defines an open interval.

• '[]' — Defines a closed interval.

• '(]' — Defines a left-open interval.

• '[)' — Defines a right-open interval.

Note By default, Sldv.Interval considers an interval to be closed if
you omit its third input argument.

As an example, the Values parameter

{0, [1, 3]}

specifies:

10-3

Proof Assumption

• 0 — a scalar

• [1, 3] — a closed interval

The Values parameter

{Sldv.Interval(0, 1, '[)'), Sldv.Point(1)}

specifies:

• Sldv.Interval(0, 1, '[)') — the right-open interval [0, 1)

• Sldv.Point(1) — a scalar

If you specify multiple scalars and intervals for a Proof Assumption
block, the Simulink Design Verifier software combines them using
a logical OR operation during the property proof. In this case, the
software considers the entire assumption to be satisfied if any single
scalar or interval is satisfied.

Data Type
Support

The Proof Assumption block accepts signals of all built-in data types
supported by the Simulink software. For a discussion on the data types
supported by the Simulink software, see “Data Types Supported by
Simulink” in Using Simulink.

10-4

Proof Assumption

Parameters
and
Dialog
Box

Enable
Specify whether the block is enabled. If selected (the default), the
Simulink Design Verifier software uses the block when proving
properties of a model. Clearing this option disables the block, that
is, causes the Simulink Design Verifier software to behave as if
the Proof Assumption block did not exist. If this option is not
selected, the block appears grayed out in the model editor.

10-5

Proof Assumption

Type
Specify whether the block behaves as a Proof Assumption or Test
Condition block. Select Test Condition to transform the Proof
Assumption block into a Test Condition block.

Values
Specify the proof assumption (see “Specifying Proof Assumptions”
on page 10-2).

Initial
Specify whether the Values parameter applies at the beginning of
or throughout the entire proof. If selected, the block constrains
only the initial value of its input signal at the start of a proof
analysis (t=0). If not selected (the default), the block constrains
its signal value for the entire proof.

Display values
Specify whether the block displays the contents of its Values
parameter in the model editor. By default, this option is selected.

Pass through style
Specify whether the block displays an output port in the model
editor. If selected (the default), the block displays its output port,
allowing its input signal to pass through as the block output. If
not selected, the block hides its output port and terminates the
input signal. The following figure illustrates the appearance of
the block in each case.

10-6

Proof Assumption

��������	
���������������� ��������	
������������������

See Also Proof Objective, Test Condition

10-7

Proof Objective

Purpose Define objectives that signals must satisfy when proving model
properties

Library Simulink Design Verifier

Description When operating in property proving mode, the Simulink® Design
Verifier™ software proves that properties of your model satisfy specified
criteria (see Chapter 7, “Proving Properties of a Model”). In this mode,
you can use Proof Objective blocks to define proof objectives for signals
in your model. The Values parameter lets you specify values that
a signal must achieve for at least one time step during a proof. The
block applies the specified Values parameter to its input signal, and
the Simulink Design Verifier software proves or disproves that the
properties of your model satisfy specified criteria.

The block’s parameter dialog box also allows you to

• Enable or disable the objective.

• Specify that the block should display its Values parameter in the
model editor.

• Specify that the block should display its output port.

Note The Simulink® and Real-Time Workshop® software ignore the
Proof Objective block during model simulation and code generation,
respectively. The Simulink Design Verifier software uses the Proof
Objective block only when proving model properties.

Specifying Proof Objectives

Use the Values parameter to define values that a signal must achieve
during a proof simulation. Specify any combination of scalars and
intervals in the form of a MATLAB® cell array (see “Cell Arrays” in
the MATLAB documentation for information about working with cell
arrays).

10-8

Proof Objective

Tip If the Values parameter specifies only one scalar value, you do not
need to enter it in the form of a MATLAB cell array.

Scalar values each comprise a single cell in the array, for example:

{0, 5}

A closed interval comprises a two-element vector as a cell in the array,
where each element specifies an interval endpoint:

{[1, 2]}

Alternatively, you can specify scalar values using the Sldv.Point
constructor, which accepts a single value as its argument. You can
specify intervals using the Sldv.Interval constructor, which requires
two input arguments, i.e., a lower bound and an upper bound for the
interval. Optionally, you can provide one of the following strings as a
third input argument that specifies inclusion or exclusion of the interval
endpoints:

• '()' — Defines an open interval.

• '[]' — Defines a closed interval.

• '(]' — Defines a left-open interval.

• '[)' — Defines a right-open interval.

Note By default, Sldv.Interval considers an interval to be closed if
you omit its third input argument.

As an example, the Values parameter

{0, [1, 3]}

specifies:

10-9

Proof Objective

• 0 — a scalar

• [1, 3] — a closed interval

The Values parameter

{Sldv.Interval(0, 1, '[)'), Sldv.Point(1)}

specifies:

• Sldv.Interval(0, 1, '[)') — the right-open interval [0, 1)

• Sldv.Point(1) — a scalar

If you specify multiple scalars and intervals for a Proof Objective block,
the Simulink Design Verifier software combines them using a logical
OR operation during the property proof. In this case, the software
considers the entire proof objective to be satisfied if any single scalar or
interval is satisfied.

Data Type
Support

The Proof Objective block accepts signals of all built-in data types
supported by the Simulink software. For a discussion on the data types
supported by the Simulink software, see “Data Types Supported by
Simulink” in Using Simulink.

10-10

Proof Objective

Parameters
and
Dialog
Box

Enable
Specify whether the block is enabled. If selected (the default), the
Simulink Design Verifier software uses the block when proving
properties of a model. Clearing this option disables the block,
that is, causes the Simulink Design Verifier software to behave
as if the Proof Objective block did not exist. If this option is not
selected, the block appears grayed out in the model editor.

10-11

Proof Objective

Type
Specify whether the block behaves as a Proof Objective or Test
Objective block. Select Test Objective to transform the Proof
Objective block into a Test Objective block.

Values
Specify the proof objective (see “Specifying Proof Objectives” on
page 10-8).

Display values
Specify whether the block displays the contents of its Values
parameter in the model editor. By default, this option is selected.

Pass through style
Specify whether the block displays an output port in the model
editor. If selected (the default), the block displays its output port,
allowing its input signal to pass through as the block output. If
not selected, the block hides its output port and terminates the
input signal. The following figure illustrates the appearance of
the block in each case.

��������	
���������������� ��������	
������������������

See Also Proof Assumption, Test Objective

10-12

Test Condition

Purpose Constrain signal values in test cases

Library Simulink Design Verifier

Description When operating in test generation mode, the Simulink® Design
Verifier™ software produces test cases that satisfy specified criteria (see
Chapter 6, “Generating Test Cases”). In this mode, you can use Test
Condition blocks to define test conditions for signals in your model. The
Values parameter lets you specify constraints on signal values during
a test case simulation. Use the Initial parameter to specify whether
the constraint applies throughout the entire test case simulation or only
at its beginning. The block applies the specified Values parameter to
its input signal, and the Simulink Design Verifier software attempts to
produce test cases that satisfy the condition.

The block’s parameter dialog box also allows you to

• Enable or disable the condition.

• Specify that the block should display its Values parameter in the
model editor.

• Specify that the block should display its output port.

Note The Simulink® and Real-Time Workshop® software ignore the
Test Condition block during model simulation and code generation,
respectively. The Simulink Design Verifier software uses the Test
Condition block only when generating test cases for a model.

Specifying Test Conditions

Use the Values parameter to constrain signal values in test cases.
Specify any combination of scalars and intervals in the form of a
MATLAB® cell array (see “Cell Arrays” in the MATLAB documentation
for information about working with cell arrays).

10-13

Test Condition

Tip If the Values parameter specifies only one scalar value, you do not
need to enter it in the form of a MATLAB cell array.

Scalar values each comprise a single cell in the array, for example:

{0, 5}

A closed interval comprises a two-element vector as a cell in the array,
where each element specifies an interval endpoint:

{[1, 2]}

Alternatively, you can specify scalar values using the Sldv.Point
constructor, which accepts a single value as its argument. You can
specify intervals using the Sldv.Interval constructor, which requires
two input arguments, i.e., a lower bound and an upper bound for the
interval. Optionally, you can provide one of the following strings as a
third input argument that specifies inclusion or exclusion of the interval
endpoints:

• '()' — Defines an open interval.

• '[]' — Defines a closed interval.

• '(]' — Defines a left-open interval.

• '[)' — Defines a right-open interval.

Note By default, Sldv.Interval considers an interval to be closed if
you omit its third input argument.

As an example, the Values parameter

{0, [1, 3]}

specifies:

10-14

Test Condition

• 0 — a scalar

• [1, 3] — a closed interval

The Values parameter

{Sldv.Interval(0, 1, '[)'), Sldv.Point(1)}

specifies:

• Sldv.Interval(0, 1, '[)') — the right-open interval [0, 1)

• Sldv.Point(1) — a scalar

If you specify multiple scalars and intervals for a Test Condition block,
the Simulink Design Verifier software combines them using a logical
OR operation when generating test cases. Consequently, the software
considers the entire test condition to be satisfied if any single scalar or
interval is satisfied.

Data Type
Support

The Test Condition block accepts signals of all built-in data types
supported by the Simulink software. For a discussion on the data types
supported by the Simulink software, see “Data Types Supported by
Simulink” in Using Simulink.

10-15

Test Condition

Parameters
and
Dialog
Box

Enable
Specify whether the block is enabled. If selected (the default), the
Simulink Design Verifier software uses the block when generating
tests for a model. Clearing this option disables the block, that is,
causes the Simulink Design Verifier software to behave as if the
Test Condition block did not exist. If this option is not selected,
the block appears grayed out in the model editor.

10-16

Test Condition

Type
Specify whether the block behaves as a Test Condition or Proof
Assumption block. Select Assumption to transform the Test
Condition block into a Proof Assumption block.

Values
Specify the test condition (see “Specifying Test Conditions” on
page 10-13).

Initial
Specify whether the Values parameter applies at the beginning of
or throughout the entire test case simulation. If selected, the block
constrains only the initial value of its input signal at the start of a
test case simulation (t=0). If not selected (the default), the block
constrains its signal value for the entire test case simulation.

Display values
Specify whether the block displays the contents of its Values
parameter in the model editor. By default, this option is selected.

Pass through style
Specify whether the block displays an output port in the model
editor. If selected (the default), the block displays its output port,
allowing its input signal to pass through as the block output. If
not selected, the block hides its output port and terminates the
input signal. The following figure illustrates the appearance of
the block in each case.

10-17

Test Condition

��������	
���������������� ��������	
������������������

See Also Proof Assumption, Test Objective

10-18

Test Objective

Purpose Define custom objectives that signals must satisfy in test cases

Library Simulink Design Verifier

Description When operating in test generation mode, the Simulink® Design
Verifier™ software produces test cases that satisfy specified criteria
(see Chapter 6, “Generating Test Cases”). In this mode, you can use
Test Objective blocks to define custom test objectives for signals in your
model. The Values parameter lets you specify values that a signal must
achieve for at least one time step during a test case simulation. The
block applies the specified Values parameter to its input signal, and
the Simulink Design Verifier software attempts to produce test cases
that satisfy the objective.

The block’s parameter dialog box also allows you to

• Enable or disable the objective.

• Specify that the block should display its Values parameter in the
model editor.

• Specify that the block should display its output port.

Note The Simulink® and Real-Time Workshop® software ignore the
Test Objective block during model simulation and code generation,
respectively. The Simulink Design Verifier software uses the Test
Objective block only when generating test cases for a model.

Specifying Test Objectives

Use the Values parameter to define custom objectives that signals must
satisfy in test cases. Specify any combination of scalars and intervals in
the form of a MATLAB® cell array (see “Cell Arrays” in the MATLAB
documentation for information about working with cell arrays).

10-19

Test Objective

Tip If the Values parameter specifies only one scalar value, you do not
need to enter it in the form of a MATLAB cell array.

Scalar values each comprise a single cell in the array, for example:

{0, 5}

A closed interval comprises a two-element vector as a cell in the array,
where each element specifies an interval endpoint:

{[1, 2]}

Alternatively, you can specify scalar values using the Sldv.Point
constructor, which accepts a single value as its argument. You can
specify intervals using the Sldv.Interval constructor, which requires
two input arguments, i.e., a lower bound and an upper bound for the
interval. Optionally, you can provide one of the following strings as a
third input argument that specifies inclusion or exclusion of the interval
endpoints:

• '()' — Defines an open interval.

• '[]' — Defines a closed interval.

• '(]' — Defines a left-open interval.

• '[)' — Defines a right-open interval.

Note By default, Sldv.Interval considers an interval to be closed if
you omit its third input argument.

As an example, the Values parameter

{0, [1, 3]}

specifies:

10-20

Test Objective

• 0 — a scalar

• [1, 3] — a closed interval

The Values parameter

{Sldv.Interval(0, 1, '[)'), Sldv.Point(1)}

specifies:

• Sldv.Interval(0, 1, '[)') — the right-open interval [0, 1)

• Sldv.Point(1) — a scalar

Data Type
Support

The Test Objective block accepts signals of all built-in data types
supported by the Simulink software. For a discussion on the data types
supported by the Simulink software, see “Data Types Supported by
Simulink” in Using Simulink.

10-21

Test Objective

Parameters
and
Dialog
Box

Enable
Specify whether the block is enabled. If selected (the default), the
Simulink Design Verifier software uses the block when generating
tests for a model. Clearing this option disables the block, that is,
causes the Simulink Design Verifier software to behave as if the
Test Objective block did not exist. If this option is not selected,
the block appears grayed out in the model editor.

Type
Specify whether the block behaves as a Test Objective or Proof
Objective block. Select Proof Objective to transform the Test
Objective block into a Proof Objective block.

10-22

Test Objective

Values
Specify the test objective (see “Specifying Test Objectives” on page
10-19).

Display values
Specify whether the block displays the contents of its Values
parameter in the model editor. By default, this option is selected.

Pass through style
Specify whether the block displays an output port in the model
editor. If selected (the default), the block displays its output port,
allowing its input signal to pass through as the block output. If
not selected, the block hides its output port and terminates the
input signal. The following figure illustrates the appearance of
the block in each case.

��������	
���������������� ��������	
������������������

See Also Proof Objective, Test Condition

10-23

Verification Subsystem

Purpose Represent subsystem that specifies proof or test objectives without
impacting simulation results or generated code

Library Simulink Design Verifier

Description This block is a Subsystem block that is preconfigured to serve as a
starting point for creating a subsystem that specifies proof or test
objectives for use with the Simulink® Design Verifier™ software. The
Real-Time Workshop® software ignores Verification Subsystem blocks
during code generation, behaving as if the subsystems do not exist.
A Verification Subsystem block allows you to add Simulink Design
Verifier components to a model without affecting its generated code.

To create a Verification Subsystem in your model:

1 Copy the Verification Subsystem block from the Simulink Design
Verifier library into your model.

2 Open the Verification Subsystem block by double-clicking it.

3 In the Verification Subsystem window, add blocks that specify proof
or test objectives. Use Inport blocks to represent input from outside
the subsystem.

The Verification Subsystem block in the Simulink Design Verifier
library is preconfigured to work correctly. For correct behavior, a
Verification Subsystem block must

• Contain no Outport blocks.

• Enable its Treat as Atomic Unit parameter.

• Specify its Mask type parameter as VerificationSubsystem.

10-24

Verification Subsystem

Note If you alter a Verification Subsystem block so that it no longer
behaves correctly, the Simulink Design Verifier software displays a
warning.

See the Subsystem block in the Simulink® Reference and “Creating
Subsystems” in Using Simulink for more information.

Examples The sldvdemo_debounce_validprop demo model includes a Verification
Subsystem that specifies two proof objectives, as shown in the following
figure.

10-25

Verification Subsystem

10-26

Verification Subsystem

See Also Proof Assumption, Proof Objective, Test Condition, Test Objective

10-27

Verification Subsystem

10-28

11

Configuration Parameters

Design Verifier Pane (p. 11-2) General parameters for controlling
analysis options and Simulink®

Design Verifier™ output

Design Verifier Pane: Block
Replacements (p. 11-9)

Parameters for controlling how the
Simulink Design Verifier software
preprocesses the models it analyzes

Design Verifier Pane: Parameters
(p. 11-14)

Parameters for controlling how the
Simulink Design Verifier software
uses parameter configurations when
analyzing models

Design Verifier Pane: Test
Generation (p. 11-18)

Parameters for controlling how the
Simulink Design Verifier software
generates test cases for models it
analyzes

Design Verifier Pane: Property
Proving (p. 11-26)

Parameters for controlling how the
Simulink Design Verifier software
proves properties of the models it
analyzes

Design Verifier Pane: Results
(p. 11-32)

Parameters for controlling how the
Simulink Design Verifier software
handles the results that it generates

Design Verifier Pane: Report
(p. 11-42)

Parameters for controlling how the
Simulink Design Verifier software
reports its results

Parameter Command-Line
Information Summary (p. 11-48)

Summary of model parameters for
configuring the Simulink Design
Verifier software

11 Configuration Parameters

Design Verifier Pane

In this section...

“Design Verifier Pane Overview” on page 11-3

“Mode” on page 11-4

“Maximum analysis time” on page 11-5

“Display unsatisfiable test objectives” on page 11-6

“Output directory” on page 11-7

“Make output file names unique by adding a suffix” on page 11-8

11-2

Design Verifier Pane

Design Verifier Pane Overview
Specify analysis options and configure Simulink® Design Verifier™ output.

11-3

11 Configuration Parameters

Mode
Specify whether the Simulink Design Verifier software generates test cases
or proves properties.

Settings
Default: Test generation

Test generation
Generates test cases for a model.

Property proving
Proves properties of a model.

Tip
The Simulink Design Verifier software specifies the value of this option
automatically if you start an analysis by selecting from the Tools menu either
Design Verifier > Generate Tests or Design Verifier > Prove Properties.

Dependency
Selecting Test generation enables the Display unsatisfiable test
objectives parameter.

Command-Line Information

Parameter: DVMode
Type: string
Value: 'TestGeneration' | 'PropertyProving'
Default: 'TestGeneration'

See Also

• Generating Test Cases

• Proving Properties of a Model

11-4

Design Verifier Pane

Maximum analysis time
Specify the maximum time (in seconds) that the Simulink Design Verifier
software spends analyzing a model.

Settings
Default: 600

The value that you enter represents the maximum number of seconds the
Simulink Design Verifier software analyzes your model.

Command-Line Information

Parameter: DVMaxProcessTime
Type: double
Value: any valid value
Default: 600

11-5

11 Configuration Parameters

Display unsatisfiable test objectives
Specify whether to display a warning for unsatisfiable test objectives.

Settings
Default: on

On
Displays a warning in the Simulation Diagnostics Viewer when the
Simulink Design Verifier software is unable to satisfy a test objective.

Off
Does not display a warning when the Simulink Design Verifier software
is unable to satisfy a test objective.

Dependency
This parameter is enabled by Mode.

Command-Line Information

Parameter: DVDisplayUnsatisfiableObjectives
Type: string
Value: 'on' | 'off'
Default: 'on'

11-6

Design Verifier Pane

Output directory
Specify a directory to which the Simulink Design Verifier software writes its
output.

Settings
Default: sldv_output/$ModelName$

• Enter a path that is either absolute or relative to the current directory.

• $ModelName$ is a token that represents the model name.

Tip
You can use the following parameters to customize the names and locations
of Simulink Design Verifier output:

• Harness model file name

• Data file name

• Report file name

• File path of the output model

Command-Line Information

Parameter: DVOutputDir
Type: string
Value: any valid path
Default: 'sldv_output/$ModelName$'

11-7

11 Configuration Parameters

Make output file names unique by adding a suffix
Specify whether the Simulink Design Verifier software makes its output file
names unique by appending a numeric suffix.

Settings
Default: on

On
Appends an incremental numeric suffix to Simulink Design Verifier
output file names. Selecting this option prevents the software from
overwriting existing files that have the same name.

Off
Does not append a suffix to Simulink Design Verifier output file names.
In this case, the software might overwrite existing files that have the
same name.

Command-Line Information

Parameter: DVMakeOutputFilesUnique
Type: string
Value: 'on' | 'off'
Default: 'on'

11-8

Design Verifier Pane: Block Replacements

Design Verifier Pane: Block Replacements

In this section...

“Block Replacements Pane Overview” on page 11-10

“Apply block replacements” on page 11-11

“List of block replacement rules” on page 11-12

“File path of the output model” on page 11-13

11-9

11 Configuration Parameters

Block Replacements Pane Overview
Specify options that control how the Simulink® Design Verifier™ software
preprocesses the models it analyzes.

See Also
Working with Block Replacements

11-10

Design Verifier Pane: Block Replacements

Apply block replacements
Specify whether the Simulink Design Verifier software replaces blocks in
a model before its analysis.

Settings
Default: off

On
Replaces blocks in a model before the Simulink Design Verifier software
analyzes it.

Off
Does not replace blocks in a model before the Simulink Design Verifier
software analyzes it.

Dependencies
This parameter enables List of block replacement rules and File path of
the output model.

Command-Line Information

Parameter: DVBlockReplacement
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
Working with Block Replacements

11-11

11 Configuration Parameters

List of block replacement rules
Specify a list of block replacement rules that the Simulink Design Verifier
software executes before its analysis.

Settings
Default: <FactoryDefaultRules>

• Specify block replacement rules as a list delimited by spaces, commas,
or carriage returns.

• The Simulink Design Verifier software processes block replacement rules in
the order that you list them.

• If you specify the default value, the Simulink Design Verifier software uses
its factory default block replacement rules.

Dependency
This parameter is enabled by Apply block replacements.

Command-Line Information

Parameter: DVBlockReplacementRulesList
Type: string
Value: any rules
Default: '<FactoryDefaultRules>'

See Also
Working with Block Replacements

11-12

Design Verifier Pane: Block Replacements

File path of the output model
Specify a directory and file name to which the Simulink Design Verifier
software saves the model that results after applying block replacement rules.

Settings
Default: $ModelName$_replacement

• Optionally, enter a path that is either absolute or relative to the path
specified in Output directory.

• Enter a file name by which the Simulink Design Verifier software saves the
model that results after applying block replacement rules.

• $ModelName$ is a token that represents the model name.

Dependency
This parameter is enabled by Apply block replacements.

Command-Line Information

Parameter: DVBlockReplacementModelFileName
Type: string
Value: any valid path and file name
Default: '$ModelName$_replacement'

See Also
Working with Block Replacements

11-13

11 Configuration Parameters

Design Verifier Pane: Parameters

In this section...

“Parameters Pane Overview” on page 11-15

“Apply parameters” on page 11-16

“Parameter configuration file” on page 11-17

11-14

Design Verifier Pane: Parameters

Parameters Pane Overview
Specify options that control how the Simulink® Design Verifier™ software
uses parameter configurations when analyzing models.

See Also
Specifying Parameter Configurations

11-15

11 Configuration Parameters

Apply parameters
Specify whether the Simulink Design Verifier software uses parameter
configurations when analyzing a model.

Settings
Default: on

On
The Simulink Design Verifier software uses parameter configurations
when analyzing a model.

Off
The Simulink Design Verifier software does not use parameter
configurations when analyzing a model.

Dependency
This parameter enables Parameter configuration file.

Command-Line Information

Parameter: DVParameters
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also
Specifying Parameter Configurations

11-16

Design Verifier Pane: Parameters

Parameter configuration file
Specify an M-file function that defines parameter configurations for a model.

Settings
Default: sldv_params_template.m

• The default file, sldv_params_template.m, is a template that you can edit
and save. The comments in the template explain the syntax you use to
specify parameter configurations.

• Click the Browse button to select an existing M-file function using a file
chooser dialog box.

• Click the Edit button to open the specified M-file function in an editor.

Dependency
This parameter is enabled by Apply parameters.

Command-Line Information

Parameter: DVParametersConfigFileName
Type: string
Value: any valid M-file function
Default: 'sldv_params_template.m'

See Also
Specifying Parameter Configurations

11-17

11 Configuration Parameters

Design Verifier Pane: Test Generation

In this section...

“Test Generation Pane Overview” on page 11-19

“Model coverage objectives” on page 11-20

“Test conditions” on page 11-21

“Test objectives” on page 11-22

“Maximum test case steps” on page 11-23

“Test suite optimization” on page 11-24

11-18

Design Verifier Pane: Test Generation

Test Generation Pane Overview
Specify options that control how the Simulink® Design Verifier™ software
generates tests for the models it analyzes.

See Also
Generating Test Cases

11-19

11 Configuration Parameters

Model coverage objectives
Specify the type of model coverage that the Simulink Design Verifier software
attempts to achieve.

Settings
Default: MCDC

None
Generates test cases that achieve only the custom objectives that you
specified in your model using, for example, Test Objective blocks.

Decision
Generates test cases that achieve decision coverage.

Condition Decision
Generates test cases that achieve condition and decision coverage.

MCDC
Generates test cases that achieve modified condition/decision coverage
(MCDC).

Command-Line Information

Parameter: DVModelCoverageObjectives
Type: string
Value: 'None' | 'Decision' | 'ConditionDecision' | 'MCDC'
Default: 'MCDC'

See Also
Generating Test Cases

11-20

Design Verifier Pane: Test Generation

Test conditions
Specify whether Test Condition blocks in your model are enabled or disabled.

Settings
Default: Use local settings

Use local settings
Enables or disables Test Condition blocks based on the value of the
Enable parameter of each block. If a block’s Enable parameter is
selected, the block is enabled; otherwise, the block is disabled.

Enable all
Enables all Test Condition blocks in the model regardless of the settings
of their Enable parameters.

Disable all
Disables all Test Condition blocks in the model regardless of the settings
of their Enable parameters.

Command-Line Information

Parameter: DVTestConditions
Type: string
Value: 'UseLocalSettings' | 'EnableAll' | 'DisableAll'
Default: 'UseLocalSettings'

See Also

• Test Condition

• Generating Test Cases

11-21

11 Configuration Parameters

Test objectives
Specify whether Test Objective blocks in your model are enabled or disabled.

Settings
Default: Use local settings

Use local settings
Enables or disables Test Objective blocks based on the value of the
Enable parameter of each block. If a block’s Enable parameter is
selected, the block is enabled; otherwise, the block is disabled.

Enable all
Enables all Test Objective blocks in the model regardless of the settings
of their Enable parameters.

Disable all
Disables all Test Objective blocks in the model regardless of the settings
of their Enable parameters.

Command-Line Information

Parameter: DVTestObjectives
Type: string
Value: 'UseLocalSettings' | 'EnableAll' | 'DisableAll'
Default: 'UseLocalSettings'

See Also

• Test Objective

• Generating Test Cases

11-22

Design Verifier Pane: Test Generation

Maximum test case steps
Specify the maximum number of simulation steps the Simulink Design
Verifier software takes when attempting to satisfy a test objective.

Settings
Default: 500

You can specify a value that represents the maximum number of simulation
steps the Simulink Design Verifier software takes when attempting to satisfy
a test objective.

Command-Line Information

Parameter: DVMaxTestCaseSteps
Type: int32
Value: any valid value
Default: 500

See Also
Generating Test Cases

11-23

11 Configuration Parameters

Test suite optimization
Specify the optimization strategy to use when generating test cases.

Settings
Default: Combined objectives

Combined objectives
Minimizes the number of test cases in a suite by generating cases that
address more than one test objective. Each test case tends to be long,
i.e., it includes many time steps.

Individual objectives
Maximizes the number of test cases in a suite by generating cases that
each address only one test objective. Each test case tends to be short,
i.e., it includes only a few time steps.

Large model
Minimizes the number of test cases in a suite by generating cases that
address more than one test objective. This strategy is tailored for large,
complex models; consequently, it tends to use all the time that the
Maximum analysis time option allots.

Tip
If an analysis using the Combined objectives strategy returns objectives
without an outcome, set this option to Individual objectives and reanalyze
the model. The Individual objectives strategy is better at proving whether
objectives are unsatisfiable. However, set this option to Large model if the
model has both of the following characteristics:

• Nonlinearities, such as those that result from multiplying or dividing the
model’s input signals

• Numerous test objectives, such as those that result when using blocks
that receive model coverage

The Large model strategy performs an analysis that is tailored to large,
complex models; but, this strategy tends to use all the time that the
Maximum analysis time option allots.

11-24

Design Verifier Pane: Test Generation

Command-Line Information

Parameter: DVTestSuiteOptimization
Type: string
Value: 'CombinedObjectives' | 'IndividualObjectives' |
'LargeModel'
Default: 'CombinedObjectives'

See Also
Generating Test Cases

11-25

11 Configuration Parameters

Design Verifier Pane: Property Proving

In this section...

“Property Proving Pane Overview” on page 11-27

“Assertion blocks” on page 11-28

“Proof assumptions” on page 11-29

“Strategy” on page 11-30

“Maximum violation steps” on page 11-31

11-26

Design Verifier Pane: Property Proving

Property Proving Pane Overview
Specify options that control how the Simulink® Design Verifier™ software
proves properties for the models it analyzes.

See Also
Proving Properties of a Model

11-27

11 Configuration Parameters

Assertion blocks
Specify whether Assertion blocks in your model are enabled or disabled.

Settings
Default: Use local settings

Use local settings
Enables or disables Assertion blocks based on the value of the Enable
parameter of each block. If a block’s Enable parameter is selected, the
block is enabled; otherwise, the block is disabled.

Enable all
Enables all Assertion blocks in the model regardless of the settings of
their Enable parameters.

Disable all
Disables all Assertion blocks in the model regardless of the settings of
their Enable parameters.

Command-Line Information

Parameter: DVAssertions
Type: string
Value: 'UseLocalSettings' | 'EnableAll' | 'DisableAll'
Default: 'UseLocalSettings'

See Also

• Assertion

• Proving Properties of a Model

11-28

Design Verifier Pane: Property Proving

Proof assumptions
Specify whether Proof Assumption blocks in your model are enabled or
disabled.

Settings
Default: Use local settings

Use local settings
Enables or disables Proof Assumption blocks based on the value of the
Enable parameter of each block. If a block’s Enable parameter is
selected, the block is enabled; otherwise, the block is disabled.

Enable all
Enables all Proof Assumption blocks in the model regardless of the
settings of their Enable parameters.

Disable all
Disables all Proof Assumption blocks in the model regardless of the
settings of their Enable parameters.

Command-Line Information

Parameter: DVProofAssumptions
Type: string
Value: 'UseLocalSettings' | 'EnableAll' | 'DisableAll'
Default: 'UseLocalSettings'

See Also

• Proof Assumption

• Proving Properties of a Model

11-29

11 Configuration Parameters

Strategy
Specify the strategy that the Simulink Design Verifier software uses when
proving properties.

Settings
Default: Prove

Prove
Performs property proofs.

Find violation
Searches for property violations within the number of simulation steps
specified by the Maximum violation steps option.

Prove with violation detection
Searches for property violations within the number of simulation steps
specified by the Maximum violation steps option; then it attempts to
prove properties for which it failed to detect a violation.

Dependency
Selecting Find violation or Prove with violation detection enables the
Maximum violation steps parameter.

Command-Line Information

Parameter: DVProvingStrategy
Type: string
Value: 'Prove' | 'FindViolation' | 'ProveWithViolationDetection'
Default: 'Prove'

See Also
Proving Properties of a Model

11-30

Design Verifier Pane: Property Proving

Maximum violation steps
Specify the maximum number of simulation steps over which the Simulink
Design Verifier software searches for property violations.

Settings
Default: 20

The Simulink Design Verifier software does not search beyond the maximum
number of simulation steps that you specify. Therefore, it cannot identify
violations that might occur later in a simulation.

Dependency
This parameter is enabled by Strategy.

Command-Line Information

Parameter: DVMaxViolationSteps
Type: int32
Value: any valid value
Default: 20

See Also
Proving Properties of a Model

11-31

11 Configuration Parameters

Design Verifier Pane: Results

In this section...

“Results Pane Overview” on page 11-33

“Save test harness as model” on page 11-34

“Harness model file name” on page 11-35

“Save test data to file” on page 11-36

“Data file name” on page 11-37

“Include expected output values” on page 11-38

“Randomize data that does not affect outcome” on page 11-40

11-32

Design Verifier Pane: Results

Results Pane Overview
Specify options that control how the Simulink® Design Verifier™ software
handles the results that it generates.

See Also
Reviewing the Results

11-33

11 Configuration Parameters

Save test harness as model
Save the test harness that the Simulink Design Verifier software generates as
a model file.

Settings
Default: on

On
Saves the test harness that the Simulink Design Verifier software
generates as a model file.

Off
Does not save the test harness that the Simulink Design Verifier
software generates.

Dependency
This parameter enables Harness model file name.

Command-Line Information

Parameter: DVSaveHarnessModel
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also
Reviewing the Results

11-34

Design Verifier Pane: Results

Harness model file name
Specify a directory and file name with which the Simulink Design Verifier
software saves the test harness it generates.

Settings
Default: $ModelName$_harness

• Optionally, enter a path that is either absolute or relative to the path
specified in Output directory.

• Enter a file name by which the Simulink Design Verifier software saves
the test harness it generates.

• $ModelName$ is a token that represents the model name.

Dependency
This parameter is enabled by Save test harness as model.

Command-Line Information

Parameter: DVHarnessModelFileName
Type: string
Value: any valid path and file name
Default: '$ModelName$_harness'

See Also
Reviewing the Results

11-35

11 Configuration Parameters

Save test data to file
Save the test data that the Simulink Design Verifier software generates to a
MAT-file.

Settings
Default: on

On
Saves the test data that the Simulink Design Verifier software generates
to a MAT-file.

Off
Does not save the test data that the Simulink Design Verifier software
generates.

Dependency
This parameter enables Data file name.

Command-Line Information

Parameter: DVSaveDataFile
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also
Reviewing the Results

11-36

Design Verifier Pane: Results

Data file name
Specify a directory and file name with which the Simulink Design Verifier
software saves the MAT-file it generates.

Settings
Default: $ModelName$_sldvdata

• Optionally, enter a path that is either absolute or relative to the path
specified in Output directory.

• Enter a file name by which the Simulink Design Verifier software saves
the MAT-file it generates.

• $ModelName$ is a token that represents the model name.

Dependency
This parameter is enabled by Save test data to file.

Command-Line Information

Parameter: DVDataFileName
Type: string
Value: any valid path and file name
Default: '$ModelName$_sldvdata'

See Also
Reviewing the Results

11-37

11 Configuration Parameters

Include expected output values
Simulate the model using test case signals and include the output values in
the Simulink Design Verifier data file.

Settings
Default: off

On
Simulates the model using the test case signals that the Simulink
Design Verifier software produces. For each test case, the software
collects the simulation output values associated with Outport blocks in
the top-level system and includes those values in the MAT-file that
it generates.

Off
Does not simulate the model and collect output values for inclusion in
the MAT-file that the Simulink Design Verifier software generates.

Tips

• The TestCases.expectedOutput subfield of the MAT-file contains the
output values. For more information, see “Anatomy of the sldvData
Structure”.

• When Include expected output values is enabled, the Simulink Design
Verifier software successively simulates the model using each test case that
it generates. Enabling this option requires more time for the Simulink
Design Verifier software to complete its analysis.

Dependency
This parameter is enabled by Save test data to file.

Command-Line Information

Parameter: DVSaveExpectedOutput
Type: string
Value: 'on' | 'off'
Default: 'off'

11-38

Design Verifier Pane: Results

See Also
Reviewing the Results

11-39

11 Configuration Parameters

Randomize data that does not affect outcome
Use random values instead of zeros for input signals that have no impact on
test or proof objectives.

Settings
Default: off

On
Assigns random values to test case or counterexample signals that do
not affect the outcome of test or proof objectives in a model. This option
can enhance traceability and improve your regression tests.

Off
Assigns zeros to test case or counterexample signals that do not affect
the outcome of test or proof objectives in a model.

Tips

• This option assigns random values to test case or counterexample signals
that otherwise would be zero. In the Simulink Design Verifier report, the
Generated Input Data table always displays a dash (–) for such signals.

• Enable this option to enhance traceability when simulating test cases or
counterexamples. For instance, consider the following model:

Only the signal entering the Switch block’s control port impacts its decision
coverage. If the Randomize data that does not affect outcome
parameter is off, the Simulink Design Verifier software uses zeros to
represent the signals from In1 and In3. When inspecting the results from
test case or counterexample simulations, it is unclear which of these signals
passes through the Switch block because they have the same value. But if
the Randomize data that does not affect outcome parameter is on, the

11-40

Design Verifier Pane: Results

software uses unique values to represent each of those signals. In this case,
it is easier to determine which signal passes through the Switch block.

Dependency
This parameter is enabled by Save test data to file.

Command-Line Information

Parameter: DVRandomizeNoEffectData
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
Reviewing the Results

11-41

11 Configuration Parameters

Design Verifier Pane: Report

In this section...

“Report Pane Overview” on page 11-43

“Generate report of the results” on page 11-44

“Report file name” on page 11-45

“Include screen shots and plots” on page 11-46

“Display report” on page 11-47

11-42

Design Verifier Pane: Report

Report Pane Overview
Specify options that control how the Simulink® Design Verifier™ software
reports its results.

See Also
Reviewing the Results

11-43

11 Configuration Parameters

Generate report of the results
Generate and save a Simulink Design Verifier report.

Settings
Default: on

On
Saves the HTML report that the Simulink Design Verifier software
generates.

Off
Does not generate a Simulink Design Verifier report.

Dependencies
When this parameter is enabled, you must enable Save test harness as
model.

This parameter enables the following parameters:

• Report file name

• Include screen shots and plots

• Display report

Command-Line Information

Parameter: DVSaveReport
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also
Reviewing the Results

11-44

Design Verifier Pane: Report

Report file name
Specify a directory and file name with which the Simulink Design Verifier
software saves the report it generates.

Settings
Default: $ModelName$_report

• Optionally, enter a path that is either absolute or relative to the path
specified in Output directory.

• Enter a file name by which the Simulink Design Verifier software saves
the report it generates.

• $ModelName$ is a token that represents the model name.

Dependency
This parameter is enabled by Generate report of the results.

Command-Line Information

Parameter: DVReportFileName
Type: string
Value: any valid path and file name
Default: '$ModelName$_report'

See Also
Reviewing the Results

11-45

11 Configuration Parameters

Include screen shots and plots
Include images in the report that the Simulink Design Verifier software
generates after completing its analysis.

Settings
Default: off

On
Includes images in the report that the Simulink Design Verifier software
generates after completing its analysis. Specifically, the report displays
images of your model and any signals that comprise its test cases or
counterexamples.

Off
Suppresses images in the report that the Simulink Design Verifier
software generates after completing its analysis.

Dependency
This parameter is enabled by Generate report of the results.

Command-Line Information

Parameter: DVReportIncludeGraphics
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
Reviewing the Results

11-46

Design Verifier Pane: Report

Display report
Display the report that the Simulink Design Verifier software generates after
completing its analysis.

Settings
Default: on

On
Displays the report that the Simulink Design Verifier software
generates after completing its analysis.

Off
Does not display the report that the Simulink Design Verifier software
generates after completing its analysis.

Dependency
This parameter is enabled by Generate report of the results.

Command-Line Information

Parameter: DVDisplayReport
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also
Reviewing the Results

11-47

11 Configuration Parameters

Parameter Command-Line Information Summary
The following table lists parameters that you can use to configure the
behavior of the Simulink® Design Verifier™ software. Use the get_param
and set_param functions to retrieve and specify values for these parameters
programmatically.

For each parameter listed in the table, the Description column indicates
where you can set its value on the Configuration Parameters dialog box.
The Values column shows the type of value required, the possible values
(separated with a vertical line), and the default value (enclosed in braces).

Parameter Description Values

DVAssertions Set by the Assertion blocks
option on the Design
Verifier > Property
Proving pane of the
Configuration Parameters
dialog box.

'EnableAll' | 'DisableAll' |
{'UseLocalSettings'}

DVBlockReplacement Set by the Apply block
replacements option on the
Design Verifier > Block
Replacements pane of the
Configuration Parameters
dialog box.

'on' | {'off'}

DVBlockReplacementModel-
FileName

Set by the File path of the
output model option on the
Design Verifier > Block
Replacements pane of the
Configuration Parameters
dialog box.

string
{'$ModelName$_replacement'}

DVBlockReplacementRules-
List

Set by the List of block
replacement rules option
on the Design Verifier
> Block Replacements
pane of the Configuration
Parameters dialog box.

string
{'<FactoryDefaultRules>'}

11-48

Parameter Command-Line Information Summary

Parameter Description Values

DVDataFileName Set by the Data file name
option on the Design
Verifier > Results pane
of the Configuration
Parameters dialog box.

string
{'$ModelName$_sldvdata'}

DVDisplayReport Set by the Display report
option on the Design
Verifier > Report pane
of the Configuration
Parameters dialog box.

{'on'} | 'off'

DVDisplayUnsatisfiable-
Objectives

Set by the Display
unsatisfiable test
objectives option on the
Design Verifier pane of the
Configuration Parameters
dialog box.

{'on'} | 'off'

DVHarnessModelFileName Set by the Harness model
file name option on the
Design Verifier > Results
pane of the Configuration
Parameters dialog box.

string
{'$ModelName$_harness'}

DVMakeOutputFilesUnique Set by the Make output file
names unique by adding
a suffix check box on the
Design Verifier pane of the
Configuration Parameters
dialog box.

{'on'} | 'off'

DVMaxProcessTime Set by the Maximum
analysis time option on the
Design Verifier pane of the
Configuration Parameters
dialog box.

double {'600'}

11-49

11 Configuration Parameters

Parameter Description Values

DVMaxTestCaseSteps Set by the Maximum test
case steps option on the
Design Verifier > Test
Generation pane of the
Configuration Parameters
dialog box.

int32 {'500'}

DVMaxViolationSteps Set by the Maximum
violation steps option
on the Design Verifier
> Property Proving
pane of the Configuration
Parameters dialog box.

int32 {'20'}

DVMode Set by the Mode option
on the Design Verifier
pane of the Configuration
Parameters dialog box.

{'TestGeneration'} |
'PropertyProving'

DVModelCoverageObjectives Set by the Model coverage
objectives option on the
Design Verifier > Test
Generation pane of the
Configuration Parameters
dialog box.

'None' | 'Decision' |
'ConditionDecision' |
{'MCDC'}

DVOutputDir Set by the Output directory
option on the Design
Verifier pane of the
Configuration Parameters
dialog box.

string
{'sldv_output/$ModelName$'}

DVParameters Set by the Apply
parameters option on
the Design Verifier >
Parameters pane of the
Configuration Parameters
dialog box.

{'on'} | 'off'

11-50

Parameter Command-Line Information Summary

Parameter Description Values

DVParametersConfigFile-
Name

Set by the Parameter
configuration file option
on the Design Verifier >
Parameters pane of the
Configuration Parameters
dialog box.

string
{'sldv_params_template.m'}

DVProofAssumptions Set by the Proof
assumptions option on
the Design Verifier
> Property Proving
pane of the Configuration
Parameters dialog box.

'EnableAll' | 'DisableAll' |
{'UseLocalSettings'}

DVProvingStrategy Set by the Strategy option
on the Design Verifier
> Property Proving
pane of the Configuration
Parameters dialog box.

'FindViolation'
| {'Prove'} |
'ProveWithViolationDetection'

DVRandomizeNoEffectData Set by the Randomize
data that does not affect
outcome option on the
Design Verifier > Results
pane of the Configuration
Parameters dialog box.

'on' | {'off'}

DVReportFileName Set by the Report file
name option on the
Design Verifier > Report
pane of the Configuration
Parameters dialog box.

string {'$ModelName$_report'}

DVReportIncludeGraphics Set by the Include screen
shots and plots option
on the Design Verifier
> Report pane of the
Configuration Parameters
dialog box.

'on' | {'off'}

11-51

11 Configuration Parameters

Parameter Description Values

DVSaveDataFile Set by the Save test
data to file option on the
Design Verifier > Results
pane of the Configuration
Parameters dialog box.

{'on'} | 'off'

DVSaveExpectedOutput Set by the Include expected
output values option on the
Design Verifier > Results
pane of the Configuration
Parameters dialog box.

'on' | {'off'}

DVSaveHarnessModel Set by the Save test harness
as model option on the
Design Verifier > Results
pane of the Configuration
Parameters dialog box.

{'on'} | 'off'

DVSaveReport Set by the Generate report
of the results option on the
Design Verifier > Report
pane of the Configuration
Parameters dialog box.

{'on'} | 'off'

DVTestConditions Set by the Test conditions
option on the Design
Verifier > Test Generation
pane of the Configuration
Parameters dialog box.

'EnableAll' | 'DisableAll' |
{'UseLocalSettings'}

11-52

Parameter Command-Line Information Summary

Parameter Description Values

DVTestObjectives Set by the Test objectives
option on the Design
Verifier > Test Generation
pane of the Configuration
Parameters dialog box.

'EnableAll' | 'DisableAll' |
{'UseLocalSettings'}

DVTestSuiteOptimization Set by the Test suite
optimization option on the
Design Verifier > Test
Generation pane of the
Configuration Parameters
dialog box.

{'CombinedObjectives'} |
'IndividualObjectives' |
'LargeModel'

11-53

11 Configuration Parameters

11-54

12

Simulink® Block Support

12 Simulink® Block Support

The following table summarizes the Simulink® Design Verifier™ software’s
support for Simulink® blocks. For each block, the third column indicates any
support notes (SNs), which provide information you will need when using the
block with the Simulink Design Verifier software. All support notes appear at
the end of the table.

Sublibrary Block Support Notes

Fixed-Point State-Space Not supported

Transfer Fcn Direct Form II Not supported

Transfer Fcn Direct Form II Time Varying Not supported

Unit Delay Enabled —

Unit Delay Enabled External IC —

Unit Delay Enabled Resettable —

Unit Delay Enabled Resettable External IC —

Unit Delay External IC —

Unit Delay Resettable —

Unit Delay Resettable External IC —

Unit Delay With Preview Enabled —

Unit Delay With Preview Enabled Resettable —

Unit Delay With Preview Enabled Resettable
External RV

—

Unit Delay With Preview Resettable —

Additional Math and
Discrete: Additional
Discrete

Unit Delay With Preview Resettable External
RV

—

Decrement Real World —

Decrement Stored Integer —

Decrement Time To Zero Not supported

Decrement To Zero —

Increment Real World —

Additional Math
and Discrete:
Increment/Decrement

Increment Stored Integer —

12-2

Sublibrary Block Support Notes

Derivative Not supported

Integrator SN10

State-Space Not supported

Transfer Fcn Not supported

Transport Delay Not supported

Variable Time Delay Not supported

Variable Transport Delay Not supported

Continuous

Zero-Pole Not supported

Backlash Not supported

Coulomb & Viscous Friction —

Dead Zone Not supported

Dead Zone Dynamic —

Hit Crossing —

Quantizer —

Rate Limiter SN11

Rate Limiter Dynamic —

Relay Not supported

Saturation —

Saturation Dynamic —

Discontinuities

Wrap To Zero —

12-3

12 Simulink® Block Support

Sublibrary Block Support Notes

Difference —

Discrete Derivative Not supported

Discrete Filter Not supported

Discrete FIR Filter —

Discrete State-Space Not supported

Discrete Transfer Fcn Not supported

Discrete Zero-Pole Not supported

Discrete-Time Integrator —

First-Order Hold —

Integer Delay Not supported

Memory —

Tapped Delay Not supported

Transfer Fcn First Order —

Transfer Fcn Lead or Lag —

Transfer Fcn Real Zero —

Unit Delay —

Discrete

Zero-Order Hold —

12-4

Sublibrary Block Support Notes

Bit Clear —

Bit Set —

Bitwise Operator —

Combinatorial Logic Not supported

Compare To Constant —

Compare To Zero —

Detect Change —

Detect Decrease —

Detect Fall Negative —

Detect Fall Nonpositive —

Detect Increase —

Detect Rise Nonnegative —

Detect Rise Positive —

Extract Bits —

Interval Test —

Interval Test Dynamic —

Logical Operator —

Relational Operator —

Logic and Bit
Operations

Shift Arithmetic SN16

12-5

12 Simulink® Block Support

Sublibrary Block Support Notes

Cosine Not supported

Direct Lookup Table (n-D) Not supported

Interpolation Using Prelookup Not supported

Lookup Table SN1

Lookup Table (2-D) SN1

Lookup Table (n-D) SN1, SN2, SN5

Lookup Table Dynamic Not supported

Prelookup Not supported

Lookup Tables

Sine Not supported

12-6

Sublibrary Block Support Notes

Abs —

Add —

Algebraic Constraint —

Assignment —

Bias —

Complex to Magnitude-Angle —

Complex to Real-Imag —

Divide —

Dot Product —

Gain SN7

Magnitude-Angle to Complex Not supported

Math Function SN3

Matrix Concatenate —

MinMax —

MinMax Running Resettable —

Permute Dimensions —

Polynomial —

Product SN7

Product of Elements SN7

Real-Imag to Complex Not supported

Reshape —

Rounding Function —

Math Operations

Sign —

12-7

12 Simulink® Block Support

Sublibrary Block Support Notes

Sine Wave Function Not supported

Slider Gain —

Squeeze —

Subtract —

Sum —

Sum of Elements —

Trigonometric Function Not supported

Unary Minus Not supported

Vector Concatenate —

Math Operations
(continued)

Weighted Sample Time Math Not supported

Assertion SN8

Check Discrete Gradient —

Check Dynamic Gap —

Check Dynamic Lower Bound —

Check Dynamic Range —

Check Dynamic Upper Bound —

Check Input Resolution —

Check Static Gap —

Check Static Lower Bound —

Check Static Range —

Model Verification

Check Static Upper Bound —

12-8

Sublibrary Block Support Notes

Atomic Subsystem —

Code Reuse Subsystem —

Configurable Subsystem —

Enabled Subsystem —

Enabled and Triggered Subsystem SN15

For Iterator Subsystem —

Function-Call Generator —

Function-Call Subsystem SN13

If SN17

If Action Subsystem —

Model Not supported

Subsystem —

Switch Case —

Switch Case Action Subsystem —

Triggered Subsystem SN15

Ports & Subsystems

While Iterator Subsystem —

12-9

12 Simulink® Block Support

Sublibrary Block Support Notes

Bus to Vector —

Data Type Conversion —

Data Type Conversion Inherited —

Data Type Duplicate —

Data Type Propagation —

Data Type Scaling Strip —

IC —

Probe —

Rate Transition —

Signal Conversion —

Signal Specification —

Weighted Sample Time Not supported

Signal Attributes

Width Not supported

12-10

Sublibrary Block Support Notes

Bus Assignment SN6

Bus Creator SN6

Bus Selector SN6

Data Store Memory —

Data Store Read —

Data Store Write —

Demux —

Environment Controller —

From —

Goto —

Goto Tag Visibility —

Index Vector —

Manual Switch —

Merge —

Multiport Switch —

Mux —

Selector —

Signal Routing

Switch —

12-11

12 Simulink® Block Support

Sublibrary Block Support Notes

Display —

Floating Scope —

Outport (Out1) SN12

Scope —

Stop Simulation Not supported

Terminator —

To File —

To Workspace —

Sinks

XY Graph —

12-12

Sublibrary Block Support Notes

Band-Limited White Noise Not supported

Chirp Signal Not supported

Clock —

Constant —

Counter Free-Running —

Counter Limited —

Digital Clock —

From File Not supported

From Workspace Not supported

Ground —

Inport (In1) SN12

Pulse Generator SN9

Ramp —

Random Number Not supported

Repeating Sequence Not supported

Repeating Sequence Interpolated Not supported

Repeating Sequence Stair —

Signal Builder Not supported

Signal Generator Not supported

Sine Wave Not supported

Step —

Sources

Uniform Random Number Not supported

12-13

12 Simulink® Block Support

Sublibrary Block Support Notes

Embedded MATLAB Function SN14

Fcn SN4, SN17

Level-2 M-file S-Function Not supported

MATLAB Fcn Not supported

S-Function Not supported

User-Defined

S-Function Builder Not supported

Symbol Note

— The Simulink Design Verifier software supports the block and requires no special
notes.

SN1 Input and output must have the same data type, either single or double.

SN2 Not supported when either the Interpolation method or the Extrapolation
method parameter specifies Cubic Spline.

SN3 Supports the following Function parameter settings for floating-point input
and output signals: magnitude^2, square, conj, reciprocal, mod, transpose,
hermitian.

Supports the following Function parameter settings for integer or fixed-point
input and output signals: sqrt, conj.

SN4 Supports all operators except ^, and supports only the mathematical functions
abs, ceil, fabs, floor, rem, and sgn.

SN5 Supports only Number of table dimensions that specify either 1 or 2.

SN6 Supports only virtual signal buses.

SN7 Supports only the Element-wise option for the Multiplication parameter.

12-14

Symbol Note

SN8 Not supported when input signals specify a fixed-point data type using [Slope
Bias] scaling.

SN9 Supports only Sample based for the Pulse type parameter; also, must specify a
discrete sample time.

SN10 The Simulink Design Verifier software supports the Integrator block only when
its parameters have the following settings:

• External reset — none

• Initial condition source — internal

• Limit output — Off

• Show saturation port — Off

• Show state port — Off

SN11 Supports only input and output signals of data type single or double.

SN12 Not supported when the Specify properties via bus object parameter is
selected.

SN13 Subsystem analysis is not supported for Function-Call Subsystem blocks that are
triggered by wide (i.e., nonscalar) signals.

SN14 See “Limitations of Support for the Embedded MATLAB™ Subset” on page 2-7
for more information.

SN15 Not supported when the trigger control signal specifies a fixed-point data type.

SN16 Not supported when the Number of bits to shift right parameter specifies a
vector and the block’s input or output signal has a data type other than single or
double.

SN17 Parameter configurations are not supported for If and Fcn blocks. The Simulink
Design Verifier software ignores any parameter configurations that you specify
for these blocks.

12-15

12 Simulink® Block Support

12-16

13

Embedded MATLAB™
Subset Support

13 Embedded MATLAB™ Subset Support

The following table lists only the Embedded MATLAB™ library functions
for which the Simulink® Design Verifier™ software provides no support or
limited support. See “Embedded MATLAB Function Library Reference” for
the complete listing of available functions.

Function Support Notes

Arithmetic Operator Functions

mldivide (\) Supports only scalar arguments.

mpower (^) Supports only integer exponents.

mrdivide (/) Supports only scalar arguments.

power (.^) Supports only integer exponents.

Casting Functions

char Not supported.

typecast Not supported.

Complex Number Functions

complex Not supported.

imag Not supported.

Error Handling Functions

assert Supported, but does not behave like a Proof Objective
block.

Exponential Functions

exp Not supported.

expm Not supported.

expm1 Not supported.

log Not supported.

log2 Not supported.

log10 Not supported.

log1p Not supported.

nextpow2 Not supported.

13-2

Function Support Notes

nthroot Not supported.

reallog Not supported.

realpow Not supported.

realsqrt Not supported.

sqrt Not supported.

Filtering and Convolution Functions

detrend Not supported.

Fixed-Point Toolbox™ Functions

complex Not supported.

isfinite Supported, but returns logical 1 (true) for infinite
or NaN values.

isinf Supported, but always returns logical 0 (false).

isnan Supported, but always returns logical 0 (false).

Interpolation and Computational Geometry

cart2pol Not supported.

cart2sph Not supported.

pol2cart Not supported.

sph2cart Not supported.

Matrix and Array Functions

angle Not supported.

cond Not supported.

det Not supported.

eig Not supported.

inv Not supported.

invhilb Not supported.

isfinite Supported, but returns logical 1 (true) for infinite
or NaN values.

13-3

13 Embedded MATLAB™ Subset Support

Function Support Notes

isinf Supported, but always returns logical 0 (false).

isnan Supported, but always returns logical 0 (false).

logspace Not supported.

lu Not supported.

norm Supported only when invoked using the syntax

norm(A,p)

where p is either 1 or inf.

normest Not supported.

pinv Not supported.

planerot Not supported.

qr Not supported.

rank Not supported.

rcond Not supported.

subspace Not supported.

Polynomial Functions

poly Not supported.

polyfit Not supported.

Signal Processing Functions

chol Not supported.

fft Not supported.

fftshift Not supported.

ifft Not supported.

ifftshift Not supported.

sosfilt Not supported.

svd Not supported.

13-4

Function Support Notes

Special Values

rand Not supported.

randn Not supported.

Specialized Math

beta Not supported.

betainc Not supported.

betaln Not supported.

ellipke Not supported.

erf Not supported.

erfc Not supported.

erfcinv Not supported.

erfcx Not supported.

erfinv Not supported.

expint Not supported.

gamma Not supported.

gammainc Not supported.

gammaln Not supported.

Statistical Functions

std Not supported.

String Functions

char Not supported.

ischar Not supported.

Structure Functions

struct Not supported.

isstruct Not supported.

Trigonometric Functions

13-5

13 Embedded MATLAB™ Subset Support

Function Support Notes

acos Not supported.

acosd Not supported.

acosh Not supported.

acot Not supported.

acotd Not supported.

acoth Not supported.

acsc Not supported.

acscd Not supported.

acsch Not supported.

asec Not supported.

asecd Not supported.

asech Not supported.

asin Not supported.

asinh Not supported.

atan Not supported.

atan2 Not supported.

atand Not supported.

atanh Not supported.

cos Not supported.

cosd Not supported.

cosh Not supported.

cot Not supported.

cotd Not supported.

coth Not supported.

csc Not supported.

cscd Not supported.

13-6

Function Support Notes

csch Not supported.

hypot Not supported.

sec Not supported.

secd Not supported.

sech Not supported.

sin Not supported.

sind Not supported.

sinh Not supported.

tan Not supported.

tand Not supported.

tanh Not supported.

13-7

13 Embedded MATLAB™ Subset Support

13-8

Glossary

Glossary

analysis model
The target model for a Simulink® Design Verifier™ analysis. If you
select an atomic subsystem for analysis, the analysis model is generated
by extracting the subsystem to a new model.

assumption
A property that is assumed to be true during a property proof. The proof
result holds only when the assumption is true.

block replacement rule
A rule that is registered with the Simulink® Design Verifier™ software
and defines how instances of specific blocks will be replaced by an
alternate implementation. The software uses M-code to define when
and how to apply a block replacement rule (see Chapter 3, “Working
with Block Replacements”).

condition coverage
Measures the percentage of the total number of logic conditions
associated with logical model objects that the simulation actually
exercised. See “Using Model Coverage” in the Simulink® Verification
and Validation™ User’s Guide.

constraint
A property that is forced to be true during test case generation.

counterexample
A test case that demonstrates a property violation.

coverage objective
A test objective that defines when a coverage point results in a
particular outcome.

coverage point
A decision, condition, or MCDC expression associated with a model
object. Each coverage point has a fixed number of mutually exclusive
outcomes.

Glossary-1

Glossary

decision coverage
Measures the percentage of the total number of simulation paths
through model objects that the simulation actually traversed. See
“Using Model Coverage” in the Simulink® Verification and Validation™
User’s Guide.

floating-point approximation
The process of approximating floating-point numbers using rational
numbers (i.e., fractions whose numerator and denominator are
small integers). The Simulink® Design Verifier™ software performs
floating-point approximations during its analysis. It can generate
invalid test cases that result from numerical differences. For example,
given a sufficiently large floating-point number x, the expression
x==(x+1) will be true; however, this expression will never hold if x is
a rational number.

invalid test case
A test case that does not satisfy its objectives.

Modified Condition/Decision Coverage (MCDC)
Measures the independence of logical block inputs and transition
conditions associated with logical model objects during the simulation.
See “Using Model Coverage” in the Simulink® Verification and
Validation™ User’s Guide.

nonlinear arithmetic
A computation in the model that cannot be expressed as a combination
of mutually exclusive linear expressions. Nonlinear arithmetic can
affect a property or test objective, and it can cause the analysis to return
an error. In this case, you should apply simplifying approximations
and abstractions.

property
A logical expression of the signals and data values, within a model, that
is intended to be proven true during simulation. Properties evaluate at
specific points in the model.

property violation
The condition during a simulation when a property is false.

Glossary-2

Glossary

test case
A sequence of numeric values and input data time that you input to a
model during its simulation.

test harness
A model that runs test cases on an analysis model.

test objective
A logical expression of the signals and data values, within a model, that
is intended to be true at least once in the resulting test case during
simulation. Test objectives evaluate at specific points in the model.

Test Objective block
The block that you add to a model to define test objectives. In the block
mask, define test objectives as values or ranges that an input signal
must satisfy during a test case.

unsatisfiable test objective
The status of a test objective that indicates a test case cannot be
generated for the specified approximations. This includes floating-point
approximations and maximum-step limitations specified in the Test
Generation pane of the Configuration Parameters dialog box.

validated property
The status of a property that indicates no counterexample exists,
subject to floating-point approximations and the settings specified in the
Property Proving pane of the Configuration Parameters dialog box.

Glossary-3

Glossary

Glossary-4

B

Examples

Use this list to find examples in the documentation.

B Examples

Working with Block Replacements
“Constructing Replacement Blocks” on page 3-7
“Writing Block Replacement Rules” on page 3-10
“Configuring Block Replacements” on page 3-15

Specifying Parameter Configurations
“Constructing the Example Model” on page 4-8
“Parameterizing the Constant Block” on page 4-11
“Specifying a Parameter Configuration” on page 4-12
“Analyzing the Example Model” on page 4-13
“Simulating the Test Cases” on page 4-16

Generating Test Cases
“Constructing the Example Model” on page 6-5
“Checking Compatibility of the Example Model” on page 6-6
“Configuring Test Generation Options” on page 6-10
“Analyzing the Example Model” on page 6-13
“Customizing Test Generation” on page 6-21
“Reanalyzing the Example Model” on page 6-25

Proving Properties of a Model
“Constructing the Example Model” on page 7-5
“Instrumenting the Example Model” on page 7-10
“Configuring Property Proving Options” on page 7-13
“Analyzing the Example Model” on page 7-15
“Customizing the Example Proof” on page 7-23
“Reanalyzing the Example Model” on page 7-25

B-2

Index

IndexB
block replacements

configuration 3-15
example 3-7
execution 3-16
factory defaults 3-3
introduction 3-2
template 3-6

block support
limitations 2-3
summary 12-2

C
configuration parameters

block replacements 5-6
Block Replacements pane 11-10

Apply block replacements 11-11
File path of the output model 11-13
List of block replacement rules 11-12

Design Verifier 5-5
Design Verifier pane 11-3

Display unsatisfiable test objectives 11-6
Make output file names unique by adding

a suffix 11-8
Maximum analysis time 11-5
Mode 11-4
Output directory 11-7

parameters 5-8
Parameters pane 11-15

Apply parameters 11-16
Parameter configuration file 11-17

property proving 5-11
Property Proving pane 11-27

Assertion blocks 11-28
Maximum violation steps 11-31
Proof assumptions 11-29
Strategy 11-30

report 5-14

Report pane 11-43
Display report 11-47
Generate report of the results 11-44
Include screen shots and plots 11-46
Report file name 11-45

results 5-12
Results pane 11-33

Data file name 11-37
Harness model file name 11-35
Include expected output values 11-38
Randomize data that does not affect

outcome 11-40
Save test data to file 11-36
Save test harness as model 11-34

summary 11-48
test generation 5-9
Test Generation pane 11-19

Maximum test case steps 11-23
Model coverage objectives 11-20
Test conditions 11-21
Test objectives 11-22
Test suite optimization 11-24

E
Embedded MATLAB library functions

limitations 2-8
Embedded MATLAB subset support

summary 13-2

M
model compatibility

checking 2-10

P
parameter configurations

example 4-7
introduction 4-2
syntax 4-4

Index-1

Index

template 4-3
Proof Assumption block 10-2
Proof Objective block 10-8
property proofs

example 7-4
introduction 7-2
Stateflow actions 7-2
workflow 7-3

S
Simulink Design Verifier

model parameters 11-48
running demo 1-6
workflow 1-17

Simulink Design Verifier data files
anatomy 8-23
simulation 8-28

Simulink Design Verifier options
saving 5-16
viewing 5-2

Simulink Design Verifier report
table of contents 8-8

Simulink Design Verifier reports
approximations 8-22
block replacements summary 8-14
summary 8-9
test cases/counterexamples 8-19
test/proof objectives 8-14
title 8-8

sldvblockreplacement function 9-2
sldvcompat function 9-3

sldvextract function 9-5
sldvgencov function 9-6
sldvharnessmerge function 9-7
sldvoptions function 9-8
sldvrun function 9-15
sldvruntest function 9-17
system requirements 1-3

T
test case generation

example 6-4
introduction 6-2
Stateflow actions 6-2
workflow 6-3

Test Condition block 10-13
test harness models

anatomy 8-2
simulation 8-6

Test Objective block 10-19

U
unsupported features

Embedded MATLAB subset 2-7
Simulink 2-3
Stateflow 2-5

V
Verification Subsystem block 10-24

Index-2

	toc
	Acknowledgment
	Getting Started
	Product Overview
	Before You Begin
	What You Need to Know
	Required Products

	Starting the Simulink ® Design Verifier Software
	Running a Demo Model
	About This Demo
	Opening the Model
	Generating Test Cases
	Exploring the Test Harness
	Interpreting the Simulink ® Design Verifier Report

	Basic Workflow for Using the Simulink ® Design Verifier Software
	Learning More
	Next Step
	Product Help
	The MathWorks Online

	Ensuring Compatibility with the Simulink ® Design Verifier Softw
	Unsupported Simulink Software Features
	List of Unsupported Simulink Software Features
	Limitations of Simulink Block Support

	Unsupported Stateflow Software Features
	Limitations of Support for the Embedded MATLAB Subset
	List of Unsupported Embedded MATLAB Subset Features
	Limitations of Embedded MATLAB Library Function Support

	Limitations of Fixed-Point Support
	Checking Model Compatibility

	Working with Block Replacements
	About Block Replacements
	Built-In Block Replacements
	Template for Block Replacement Rules
	Creating Custom Block Replacements
	About Custom Block Replacements
	Constructing Replacement Blocks
	Writing Block Replacement Rules

	Executing Block Replacements
	Configuring Block Replacements
	Replacing Blocks in a Model

	Specifying Parameter Configurations
	About Parameter Configurations
	Template for Parameter Configurations
	Defining Parameter Configurations
	Parameter Configuration Example
	About This Example
	Constructing the Example Model
	Parameterizing the Constant Block
	Specifying a Parameter Configuration
	Analyzing the Example Model
	Simulating the Test Cases

	Configuring Simulink ® Design Verifier Options
	Viewing Simulink ® Design Verifier Options
	Configuring Simulink ® Design Verifier Options
	Design Verifier Pane
	Analysis options
	Output

	Block Replacements Pane
	Block replacements

	Parameters Pane
	Parameters

	Test Generation Pane
	Test generation

	Property Proving Pane
	Property proving

	Results Pane
	Harness model options
	Data file options

	Report Pane
	Report

	Saving Simulink ® Design Verifier Options

	Generating Test Cases
	About Test Case Generation
	Basic Workflow for Generating Test Cases
	Generating Test Cases Example
	About This Example
	Constructing the Example Model
	Checking Compatibility of the Example Model
	Configuring Test Generation Options
	Analyzing the Example Model
	Customizing Test Generation
	Reanalyzing the Example Model

	Proving Properties of a Model
	About Property Proofs
	Basic Workflow for Proving Model Properties
	Proving Model Properties Example
	About This Example
	Constructing the Example Model
	Checking Compatibility of the Example Model
	Instrumenting the Example Model
	Configuring Property Proving Options
	Analyzing the Example Model
	Customizing the Example Proof
	Reanalyzing the Example Model

	Reviewing the Results
	Exploring Test Harness Models
	About Test Harness Models
	Anatomy of a Test Harness
	Simulating the Test Harness

	Understanding Simulink ® Design Verifier Reports
	About Simulink ® Design Verifier Reports
	Front Matter
	Summary Chapter
	Input Model
	Analysis Information
	Output Files
	Options

	Block Replacements Summary Chapter
	Test/Proof Objectives Chapter
	Status
	Model Hierarchy

	Test Cases / Counterexamples Chapter
	Test Cases
	Counterexamples

	Approximations Chapter

	Examining Simulink ® Design Verifier Data Files
	About Simulink ® Design Verifier Data Files
	Anatomy of the sldvData Structure
	AnalysisInformation Field
	ModelObjects Field
	Objectives Field
	TestCases Field

	Simulating Models with Simulink ® Design Verifier Data Files

	Analyzing Large Models and Improving Performance
	How the Simulink ® Design Verifier Software Works
	Sources of Model Complexity
	Handling Models with Large Numbers of Inputs
	Reducing Complexity from Floating-Point Operations and Nonlinear
	Partitioning Inputs and Generating Tests Incrementally
	Handling Models with Large State Spaces
	Handling Problems with Counters and Timers
	Strategies for Proving Properties of Large Models

	Function Reference
	Block Reference
	Configuration Parameters
	Design Verifier Pane
	Design Verifier Pane Overview
	Mode
	Settings
	Tip
	Dependency
	Command-Line Information
	See Also

	Maximum analysis time
	Settings
	Command-Line Information

	Display unsatisfiable test objectives
	Settings
	Dependency
	Command-Line Information

	Output directory
	Settings
	Tip
	Command-Line Information

	Make output file names unique by adding a suffix
	Settings
	Command-Line Information

	Design Verifier Pane: Block Replacements
	Block Replacements Pane Overview
	See Also

	Apply block replacements
	Settings
	Dependencies
	Command-Line Information
	See Also

	List of block replacement rules
	Settings
	Dependency
	Command-Line Information
	See Also

	File path of the output model
	Settings
	Dependency
	Command-Line Information
	See Also

	Design Verifier Pane: Parameters
	Parameters Pane Overview
	See Also

	Apply parameters
	Settings
	Dependency
	Command-Line Information
	See Also

	Parameter configuration file
	Settings
	Dependency
	Command-Line Information
	See Also

	Design Verifier Pane: Test Generation
	Test Generation Pane Overview
	See Also

	Model coverage objectives
	Settings
	Command-Line Information
	See Also

	Test conditions
	Settings
	Command-Line Information
	See Also

	Test objectives
	Settings
	Command-Line Information
	See Also

	Maximum test case steps
	Settings
	Command-Line Information
	See Also

	Test suite optimization
	Settings
	Tip
	Command-Line Information
	See Also

	Design Verifier Pane: Property Proving
	Property Proving Pane Overview
	See Also

	Assertion blocks
	Settings
	Command-Line Information
	See Also

	Proof assumptions
	Settings
	Command-Line Information
	See Also

	Strategy
	Settings
	Dependency
	Command-Line Information
	See Also

	Maximum violation steps
	Settings
	Dependency
	Command-Line Information
	See Also

	Design Verifier Pane: Results
	Results Pane Overview
	See Also

	Save test harness as model
	Settings
	Dependency
	Command-Line Information
	See Also

	Harness model file name
	Settings
	Dependency
	Command-Line Information
	See Also

	Save test data to file
	Settings
	Dependency
	Command-Line Information
	See Also

	Data file name
	Settings
	Dependency
	Command-Line Information
	See Also

	Include expected output values
	Settings
	Tips
	Dependency
	Command-Line Information
	See Also

	Randomize data that does not affect outcome
	Settings
	Tips
	Dependency
	Command-Line Information
	See Also

	Design Verifier Pane: Report
	Report Pane Overview
	See Also

	Generate report of the results
	Settings
	Dependencies
	Command-Line Information
	See Also

	Report file name
	Settings
	Dependency
	Command-Line Information
	See Also

	Include screen shots and plots
	Settings
	Dependency
	Command-Line Information
	See Also

	Display report
	Settings
	Dependency
	Command-Line Information
	See Also

	Parameter Command-Line Information Summary

	Simulink Block Support
	Embedded MATLAB Subset Support
	Glossary
	Examples
	Working with Block Replacements
	Specifying Parameter Configurations
	Generating Test Cases
	Proving Properties of a Model

	Index

